Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 31(12): 2757-2772, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32753400

RESUMO

BACKGROUND: Cell-based therapies aimed at replenishing renal parenchyma have been proposed as an approach for treating CKD. However, pathogenic mechanisms involved in CKD such as renal hypoxia result in loss of kidney function and limit engraftment and therapeutic effects of renal epithelial progenitors. Jointly administering vessel-forming cells (human mesenchymal stromal cells [MSCs] and endothelial colony-forming cells [ECFCs]) may potentially result in in vivo formation of vascular networks. METHODS: We administered renal tubule-forming cells derived from human adult and fetal kidneys (previously shown to exert a functional effect in CKD mice) into mice, alongside MSCs and ECFCs. We then assessed whether this would result in generation of "renovascular units" comprising both vessels and tubules with potential interaction. RESULTS: Directly injecting vessel-forming cells and renal tubule-forming cells into the subcutaneous and subrenal capsular space resulted in self-organization of donor-derived vascular networks that connected to host vasculature, alongside renal tubules comprising tubular epithelia of different nephron segments. Vessels derived from MSCs and ECFCs augmented in vivo tubulogenesis by the renal tubule-forming cells. In vitro coculture experiments showed that MSCs and ECFCs induced self-renewal and genes associated with mesenchymal-epithelial transition in renal tubule-forming cells, indicating paracrine effects. Notably, after renal injury, renal tubule-forming cells and vessel-forming cells infused into the renal artery did not penetrate the renal vascular network to generate vessels; only administering them into the kidney parenchyma resulted in similar generation of human renovascular units in vivo. CONCLUSIONS: Combined cell therapy of vessel-forming cells and renal tubule-forming cells aimed at alleviating renal hypoxia and enhancing tubulogenesis holds promise as the basis for new renal regenerative therapies.


Assuntos
Células Endoteliais/citologia , Glomérulos Renais/citologia , Túbulos Renais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Técnicas de Cocultura , Humanos , Camundongos , Neovascularização Fisiológica
2.
Pediatr Res ; 83(1-2): 267-274, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985199

RESUMO

The mammalian kidney is a highly complex organ, composed of various cell types within a unique structural framework. Nonetheless, in recent years, giant leaps in our understanding of nephrogenesis and the origin of new cells in the adult kidney have resulted in novel routes to regenerate damaged nephrons. While several strategies can be envisioned to achieve this aim, one common theme is the reliance on renal lineage cells, as extrarenal cells, such as bone marrow-derived cells, have been shown to be devoid of renal differentiation capacity. Herein, we will present the main motivation for the pursuit for cell-based therapies, which is the ever growing problem of chronic kidney disease (CKD), and discuss different strategies toward replenishing the damaged renal parenchyma. These include transplantation of fetal kidney grafts or fetal kidney stem cells, directed differentiation of pluripotent stem cells into kidney epithelia, establishment of renal progenitors from the adult kidney, and genetic reprogramming of mature kidney cells into a progenitor state. Taken together with novel techniques recapitulating the three-dimensional developmental environment, these advances are expected to take the field into a new era, bringing us closer than ever to the day when kidney stem cell-based therapy becomes a viable therapeutic option.


Assuntos
Falência Renal Crônica/terapia , Rim/citologia , Regeneração , Animais , Diferenciação Celular , Linhagem da Célula , Células Epiteliais/citologia , Homeostase , Humanos , Transplante de Rim , Camundongos , Néfrons/metabolismo , Organogênese , Células-Tronco Pluripotentes/citologia , Qualidade de Vida , Medicina Regenerativa , Transplante de Células-Tronco , Células-Tronco/citologia
3.
Am J Pathol ; 183(5): 1621-1633, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24055371

RESUMO

The nephron is composed of a monolayer of epithelial cells that make up its various compartments. In development, these cells begin as mesenchyme. NCAM1, abundant in the mesenchyme and early nephron lineage, ceases to express in mature kidney epithelia. We show that, once placed in culture and released from quiescence, adult human kidney epithelial cells (hKEpCs), uniformly positive for CD24/CD133, re-express NCAM1 in a specific cell subset that attains a stem/progenitor state. Immunosorted NCAM1(+) cells overexpressed early nephron progenitor markers (PAX2, SALL1, SIX2, WT1) and acquired a mesenchymal fate, indicated by high vimentim and reduced E-cadherin levels. Gene expression and microarray analysis disclosed both a proximal tubular origin of these cells and molecules regulating epithelial-mesenchymal transition. NCAM1(+) cells generated clonal progeny when cultured in the presence of fetal kidney conditioned medium, differentiated along mesenchymal lineages but retained the unique propensity to generate epithelial kidney spheres and produce epithelial renal tissue on single-cell grafting in chick CAM and mouse. Depletion of NCAM1(+) cells from hKEpCs abrogated stemness traits in vitro. Eliminating these cells during the regenerative response that follows glycerol-induced acute tubular necrosis worsened peak renal injury in vivo. Thus, higher clone-forming and developmental capacities characterize a distinct subset of adult kidney-derived cells. The ability to influence an endogenous regenerative response via NCAM1 targeting may lead to novel therapeutics for renal diseases.


Assuntos
Antígeno CD56/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Rim/patologia , Células-Tronco/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Adulto , Animais , Anticorpos/metabolismo , Biomarcadores/metabolismo , Nitrogênio da Ureia Sanguínea , Diferenciação Celular/genética , Proliferação de Células , Galinhas , Células Clonais , Regulação para Baixo/genética , Ontologia Genética , Células HEK293 , Humanos , Mesoderma/patologia , Camundongos , Anotação de Sequência Molecular , Néfrons/metabolismo , Néfrons/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Transcriptoma/genética , Regulação para Cima/genética
4.
J Am Soc Nephrol ; 24(4): 550-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23520208

RESUMO

Abnormal differentiation of the renal stem/progenitor pool into kidney tissue can lead to renal hypodysplasia (RHD), but the underlying causes of RHD are not well understood. In this multicenter study, we identified 20 Israeli pedigrees with isolated familial, nonsyndromic RHD and screened for mutations in candidate genes involved in kidney development, including PAX2, HNF1B, EYA1, SIX1, SIX2, SALL1, GDNF, WNT4, and WT1. In addition to previously reported RHD-causing genes, we found that two affected brothers were heterozygous for a missense variant in the WNT4 gene. Functional analysis of this variant revealed both antagonistic and agonistic canonical WNT stimuli, dependent on cell type. In HEK293 cells, WNT4 inhibited WNT3A induced canonical activation, and the WNT4 variant significantly enhanced this inhibition of the canonical WNT pathway. In contrast, in primary cultures of human fetal kidney cells, which maintain WNT activation and more closely represent WNT signaling in renal progenitors during nephrogenesis, this mutation caused significant loss of function, resulting in diminished canonical WNT/ß-catenin signaling. In conclusion, heterozygous WNT4 variants are likely to play a causative role in renal hypodysplasia.


Assuntos
Diferenciação Celular/genética , Nefropatias/genética , Via de Sinalização Wnt/genética , Proteína Wnt4/genética , Adolescente , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Lactente , Israel , Masculino , Mutação , Fator de Transcrição PAX2/genética , Análise de Sequência de DNA , Adulto Jovem
5.
Mol Ther Methods Clin Dev ; 29: 329-346, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214315

RESUMO

Upscaling of kidney epithelial cells is crucial for renal regenerative medicine. Nonetheless, the adult kidney lacks a distinct stem cell hierarchy, limiting the ability to long-term propagate clonal populations of primary cells that retain renal identity. Toward this goal, we tested the paradigm of shifting the balance between differentiation and stemness in the kidney by introducing a single pluripotency factor, OCT4. Here we show that ectopic expression of OCT4 in human adult kidney epithelial cells (hKEpC) induces the cells to dedifferentiate, stably proliferate, and clonally emerge over many generations. Control hKEpC dedifferentiate, assume fibroblastic morphology, and completely lose clonogenic capacity. Analysis of gene expression and histone methylation patterns revealed that OCT4 represses the HNF1B gene module, which is critical for kidney epithelial differentiation, and concomitantly activates stemness-related pathways. OCT4-hKEpC can be long-term expanded in the dedifferentiated state that is primed for renal differentiation. Thus, when expanded OCT4-hKEpC are grown as kidney spheroids (OCT4-kSPH), they reactivate the HNF1B gene signature, redifferentiate, and efficiently generate renal structures in vivo. Hence, changes occurring in the cellular state of hKEpC following OCT4 induction, long-term propagation, and 3D aggregation afford rapid scale-up technology of primary renal tissue-forming cells.

6.
Stem Cells ; 28(9): 1649-60, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20652959

RESUMO

End-stage renal disease (ESRD) is defined as the inability of the kidneys to remove waste products and excess fluid from the blood. ESRD progresses from earlier stages of chronic kidney disease (CKD) and occurs when the glomerular filtration rate (GFR) is below 15 ml/minute/1.73 m(2). CKD and ESRD are dramatically rising due to increasing aging population, population demographics, and the growing rate of diabetes and hypertension. Identification of multipotential stem/progenitor populations in mammalian tissues is important for therapeutic applications and for understanding developmental processes and tissue homeostasis. Progenitor populations are ideal targets for gene therapy, cell transplantation, and tissue engineering. The demand for kidney progenitors is increasing due to severe shortage of donor organs. Because dialysis and transplantation are currently the only successful therapies for ESRD, cell therapy offers an alternative approach for kidney diseases. However, this approach may be relevant only in earlier stages of CKD, when kidney function and histology are still preserved, allowing for the integration of cells and/or for their paracrine effects, but not when small and fibrotic end-stage kidneys develop. Although blood- and bone marrow-derived stem cells hold a therapeutic promise, they are devoid of nephrogenic potential, emphasizing the need to seek kidney stem cells beyond known extrarenal sources. Moreover, controversies regarding the existence of a true adult kidney stem cell highlight the importance of studying cell-based therapies using pluripotent cells, progenitor cells from fetal kidney, or dedifferentiated/reprogrammed adult kidney cells.


Assuntos
Diferenciação Celular , Terapia Genética , Falência Renal Crônica/terapia , Rim/cirurgia , Transplante de Células-Tronco , Células-Tronco Adultas/transplante , Animais , Diferenciação Celular/genética , Separação Celular , Células-Tronco Fetais/transplante , Regulação da Expressão Gênica no Desenvolvimento , Taxa de Filtração Glomerular , Humanos , Rim/patologia , Rim/fisiopatologia , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Falência Renal Crônica/fisiopatologia , Células-Tronco Pluripotentes/transplante
7.
Biofabrication ; 14(1)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34798628

RESUMO

Microtia is a small, malformed external ear, which occurs at an incidence of 1-10 per 10 000 births. Autologous reconstruction using costal cartilage is the most widely accepted surgical microtia repair technique. Yet, the method involves donor-site pain and discomfort and relies on the artistic skill of the surgeon to create an aesthetic ear. This study employed novel tissue engineering techniques to overcome these limitations by developing a clinical-grade, 3D-printed biodegradable auricle scaffold that formed stable, custom-made neocartilage implants. The unique scaffold design combined strategically reinforced areas to maintain the complex topography of the outer ear and micropores to allow cell adhesion for the effective production of stable cartilage. The auricle construct was computed tomography (CT) scan-based composed of a 3D-printed clinical-grade polycaprolactone scaffold loaded with patient-derived chondrocytes produced from either auricular cartilage or costal cartilage biopsies combined with adipose-derived mesenchymal stem cells. Cartilage formation was measured within the constructin vitro, and cartilage maturation and stabilization were observed 12 weeks after its subcutaneous implantation into a murine model. The proposed technology is simple and effective and is expected to improve aesthetic outcomes and reduce patient discomfort.


Assuntos
Microtia Congênita , Células-Tronco Mesenquimais , Animais , Condrócitos , Microtia Congênita/cirurgia , Cartilagem da Orelha , Humanos , Camundongos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais
8.
Sci Rep ; 10(1): 22097, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328501

RESUMO

In-vivo single cell clonal analysis in the adult mouse kidney has previously shown lineage-restricted clonal proliferation within varying nephron segments as a mechanism responsible for cell replacement and local regeneration. To analyze ex-vivo clonal growth, we now preformed limiting dilution to generate genuine clonal cultures from one single human renal epithelial cell, which can give rise to up to 3.4 * 106 cells, and analyzed their characteristics using transcriptomics. A comparison between clonal cultures revealed restriction to either proximal or distal kidney sub-lineages with distinct cellular and molecular characteristics; rapidly amplifying de-differentiated clones and a stably proliferating cuboidal epithelial-appearing clones, respectively. Furthermore, each showed distinct molecular features including cell-cycle, epithelial-mesenchymal transition, oxidative phosphorylation, BMP signaling pathway and cell surface markers. In addition, analysis of clonal versus bulk cultures show early clones to be more quiescent, with elevated expression of renal developmental genes and overall reduction in renal identity markers, but with an overlapping expression of nephron segment identifiers and multiple identity. Thus, ex-vivo clonal growth mimics the in-vivo situation displaying lineage-restricted precursor characteristics of mature renal cells. These data suggest that for reconstruction of varying renal lineages with human adult kidney based organoid technology and kidney regeneration ex-vivo, use of multiple heterogeneous precursors is warranted.


Assuntos
Evolução Clonal/genética , Rim/crescimento & desenvolvimento , Mesoderma/crescimento & desenvolvimento , Regeneração/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Biologia Computacional , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal/genética , Humanos , Rim/citologia , Mesoderma/metabolismo , Néfrons/crescimento & desenvolvimento , Néfrons/metabolismo , Cultura Primária de Células , Análise de Célula Única , Células-Tronco/citologia
9.
Cell Rep ; 30(3): 852-869.e4, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968258

RESUMO

End-stage renal disease is a worldwide epidemic requiring renal replacement therapy. Harvesting tissue from failing kidneys and autotransplantation of tissue progenitors could theoretically delay the need for dialysis. Here we use healthy and end-stage human adult kidneys to robustly expand proliferative kidney epithelial cells and establish 3D kidney epithelial cultures termed "nephrospheres." Formation of nephrospheres reestablishes renal identity and function in primary cultures. Transplantation into NOD/SCID mice shows that nephrospheres restore self-organogenetic properties lost in monolayer cultures, allowing long-term engraftment as tubular structures, potentially adding nephron segments and demonstrating self-organization as critical to survival. Furthermore, long-term tubular engraftment of nephrospheres is functionally beneficial in murine models of chronic kidney disease. Remarkably, nephrospheres inhibit pro-fibrotic collagen production in cultured fibroblasts via paracrine modulation, while transplanted nephrospheres induce transcriptional signatures of proliferation and release from quiescence, suggesting re-activation of endogenous repair. These data support the use of human nephrospheres for renal cell therapy.


Assuntos
Rim/lesões , Rim/patologia , Esferoides Celulares/patologia , Cicatrização , Animais , Diferenciação Celular , Proliferação de Células , Doença Crônica , Modelos Animais de Doenças , Células Epiteliais/patologia , Fibrose , Humanos , Rim/fisiopatologia , Camundongos Endogâmicos NOD , Camundongos SCID , Insuficiência Renal Crônica/patologia , Esferoides Celulares/transplante
10.
Otol Neurotol ; 40(10): e1030-e1036, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436634

RESUMO

HYPOTHESIS: The scarred rim of chronic tympanic membrane (TM) perforation contains keratinocytes with potential for regeneration while maintaining their morphological and genetic characteristics. BACKGROUND: The squamous epithelium of the TM has a good regeneration capacity. Successful isolation and expansion of human TM keratinocytes (hTMKR) was reported from a full, en-bloc, healthy TM. METHODS: Trimmed margins of the TM perforation (harvested during tympanoplasty) underwent enzymatic digestion (collagenase or trypsin) and were seeded either with serum-containing medium (SCM) or keratinocyte serum-free medium (KSFM) and progenitor cell growth medium (PR) (KSFM:PR, 1:1). Gene expression analysis by real-time qRT-PCR was used to compare between human TM cells derived from scarred perforation margins (hTMKR), normal human skin keratinocytes (NhSKR), and human fibroblasts. RESULTS: Twelve patients were included in the study. In 9 of 12 cases (75%) single-cell isolation with fibroblastic or epithelial cell morphology (or both) was achieved. Cells seeded with KSFM:PR yielded epithelial morphology (hTMKR) while SCM culturing resulted in a fibroblastic morphology (hTMFib). Gene expression analysis revealed significant higher expression of VCAN (p = 0.002) and FOXC2 (p = 0.015) at the mRNA levels (normal hTMKR markers) in hTMKR compared to NhSKR. In addition, a comparison of gene expression between hTMKR and hTMFib revealed significantly higher levels of both VCAN (p = 0.045) and SLC6A14 (p = 0.036) among hTMKR. CONCLUSION: For the first time, we developed a protocol to isolate hTMKR from scarred TM perforation margins. Furthermore, we succeeded in achieving tissue expansion that preserved the characteristic of healthy TM cells. This study bridges "regenerative medicine" approach with clinical and surgical objectives.


Assuntos
Técnicas de Cultura de Células/métodos , Cicatriz , Células Epiteliais/citologia , Queratinócitos/citologia , Células-Tronco/citologia , Técnicas de Cultura de Tecidos/métodos , Perfuração da Membrana Timpânica/complicações , Membrana Timpânica , Timpanoplastia/métodos , Adolescente , Adulto , Idoso , Sistemas de Transporte de Aminoácidos , Criança , Cicatriz/patologia , Cicatriz/cirurgia , Estudos de Viabilidade , Feminino , Fibroblastos , Humanos , Masculino , Pessoa de Meia-Idade , Medicina Regenerativa/métodos , Coleta de Tecidos e Órgãos/métodos , Membrana Timpânica/citologia , Membrana Timpânica/patologia , Adulto Jovem
11.
Pathol Res Pract ; 215(8): 152491, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31202518

RESUMO

BACKGROUND: Cancer Stem Cells (CSCs) have been suggested as the culprit responsible for tumor resistance to treatment and disease recurrence. Wilms' tumor (WT) is a paradigm for studying the relation between development and tumorigenesis, showing three main histological elements: undifferentiated blastema, epithelia and stroma, mimicking human kidney development. NCAM + ALDH1+ cells were previously found to contain the cancer stem like-cell population in WT. Thus far, the correlation between histologic characterization of this cell population, clinicopathologic parameters and prognostic outcome has yet been investigated in WT. PROCEDURES: Paraffin-imbedded primary WT specimens from twenty-four patients were immunostained for NCAM and ALDH1. Positivity and histologic compartment localization were determined by two independent observers, blinded to the clinical outcome. Clinicopathologic parameters and prognostic outcomes were determined based on the patients' medical records. The association of NCAM and ALDH1 co-localization with clinicopathologic characteristics was analyzed byχ2-test. Survival analysis was carried out by the log-rank test using Kaplan-Meier method. RESULTS: Blastemal co-localization of NCAM and ALDH1 was observed in 33% of WTs. Metastases, ICE chemotherapy protocol, blastemal predominance following preoperative chemotherapy, recurrence and patient demise were found to significantly correlate with blastemal NCAM + ALDH1+ cell staining (p < 0.05). A significant inverse correlation between blastemal double positive cells, disease-free survival and overall survival was also observed. CONCLUSIONS: WT blastemal NCAM + ALDH1+ CSCs significantly correlate with adverse clinicopathologic parameters and poorer prognosis. These results underscore the role of CSCs in disease progression. Additionally, this pilot study supports the addition of these markers for risk stratification of WTs.


Assuntos
Progressão da Doença , Neoplasias Renais/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Tumor de Wilms/patologia , Protocolos de Quimioterapia Combinada Antineoplásica , Pré-Escolar , Intervalo Livre de Doença , Feminino , Humanos , Rim/patologia , Neoplasias Renais/terapia , Masculino , Recidiva Local de Neoplasia/terapia , Moléculas de Adesão de Célula Nervosa/metabolismo , Projetos Piloto , Resultado do Tratamento , Tumor de Wilms/terapia
12.
Oncogenesis ; 8(9): 48, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477684

RESUMO

Pleuropulmonary blastoma (PPB) is a rare pediatric lung neoplasm that recapitulates developmental pathways of early embryonic lungs. As lung development proceeds with highly regulated mesenchymal-epithelial interactions, a DICER1 mutation in PPB generates a faulty lung differentiation program with resultant biphasic tumors composed of a primitive epithelial and mesenchymal stroma with early progenitor blastomatous cells. Deciphering of PPB progression has been hampered by the difficulty of culturing PPB cells, and specifically progenitor blastomatous cells. Here, we show that in contrast with in-vitro culture, establishment of PPB patient-derived xenograft (PDX) in NOD-SCID mice selects for highly proliferating progenitor blastoma overexpressing critical regulators of lung development and multiple imprinted genes. These stem-like tumors were sequentially interrogated by gene profiling to show a FGF module that is activated alongside Neural cell adhesion molecule 1 (NCAM1). Targeting the progenitor blastoma and these transitions with an anti-NCAM1 immunoconjugate (Lorvotuzumab mertansine) inhibited tumor growth and progression providing new paradigms for PPB therapeutics. Altogether, our novel in-vivo PPB xenograft model allowed us to enrich for highly proliferating stem-like cells and to identify FGFR and NCAM1 as two key players that can serve as therapeutic targets in this poorly understood and aggressive disease.

13.
Kidney Int Rep ; 3(1): 155-159, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29340326

RESUMO

INTRODUCTION: Renal angiomyolipoma (AML) is the most common benign renal tumor. Despite a generally benign histology, AML can result in significant morbidity, from intra-abdominal hemorrhage and reduction in kidney function. While classically associated with the autosomal dominant disorder tuberous sclerosis complex (TSC) or with pulmonary lymphangioleiomyomatosis, most AMLs are sporadic. Mammalian target of rapamycin complex 1 (mTORC1) inhibitors (e.g., sirolimus) have been found to be effective in treating TSC- or lymphangioleiomyomatosis-associated AML, but to date it is unknown whether this strategy is effective for sporadic AML. METHODS: We stained tumor specimens of sporadic AML patients for pS6 to assess for mTORC1 activation. RESULTS: We detected strong activation of the mTORC1 pathway, similar to TSC-associated AML. Consequently, we showed that in vitro treatment with sirolimus results in significant growth inhibition of the human sporadic AML cell line SV7Tert, similar to the effect seen when the same treatment is applied to the human TSC-associated AML cell line UMBSV-tel. To further investigate the potential of mTORC1 inhibition for treating sporadic AML and assess whether the in vitro results are clinically relevant, we identified a patient with sporadic, bilateral AMLs, showing continued tumor growth following a partial nephrectomy. Using immunostaining, we detected strong mTORC1 activation in the patient's AML tissue. Accordingly, upon treatment with sirolimus, we noted significant reduction in the patient's tumor volume and resolution of hydronephrosis, without any significant side effects. CONCLUSION: We propose mTORC1 inhibition as an effective treatment option for patients with sporadic AML, which represents the vast majority of patients with this tumor.

14.
Stem Cell Reports ; 11(3): 795-810, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30122444

RESUMO

Cancer stem cell (CSC) identification relies on transplantation assays of cell subpopulations sorted from fresh tumor samples. Here, we attempt to bypass limitations of abundant tumor source and predetermined immune selection by in vivo propagating patient-derived xenografts (PDX) from human malignant rhabdoid tumor (MRT), a rare and lethal pediatric neoplasm, to an advanced state in which most cells behave as CSCs. Stemness is then probed by comparative transcriptomics of serial PDXs generating a gene signature of epithelial to mesenchymal transition, invasion/motility, metastasis, and self-renewal, pinpointing putative MRT CSC markers. The relevance of these putative CSC molecules is analyzed by sorting tumorigenic fractions from early-passaged PDX according to one such molecule, deciphering expression in archived primary tumors, and testing the effects of CSC molecule inhibition on MRT growth. Using this platform, we identify ALDH1 and lysyl oxidase (LOX) as relevant targets and provide a larger framework for target and drug discovery in rare pediatric cancers.


Assuntos
Carcinogênese/patologia , Invasividade Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Tumor Rabdoide/patologia , Família Aldeído Desidrogenase 1 , Animais , Transição Epitelial-Mesenquimal , Feminino , Humanos , Isoenzimas/análise , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína-Lisina 6-Oxidase/análise , Retinal Desidrogenase/análise , Células Tumorais Cultivadas
15.
Stem Cell Reports ; 9(1): 279-291, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28552604

RESUMO

During nephrogenesis, stem/progenitor cells differentiate and give rise to early nephron structures that segment to proximal and distal nephron cell types. Previously, we prospectively isolated progenitors from human fetal kidney (hFK) utilizing a combination of surface markers. However, upon culture nephron progenitors differentiated and could not be robustly maintained in vitro. Here, by culturing hFK in a modified medium used for in vitro growth of mouse nephron progenitors, and by dissection of NCAM+/CD133- progenitor cells according to EpCAM expression (NCAM+/CD133-/EpCAM-, NCAM+/CD133-/EpCAMdim, NCAM+/CD133-/EpCAMbright), we show at single-cell resolution a preservation of uninduced and induced cap mesenchyme as well as a transitioning mesenchymal-epithelial state. Concomitantly, differentiating and differentiated epithelial lineages are also maintained. In vitro expansion of discrete stages of early human nephrogenesis in nephron stem cell cultures may be used for drug screening on a full repertoire of developing kidney cells and for prospective isolation of mesenchymal or epithelial renal lineages for regenerative medicine.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Rim/citologia , Néfrons/citologia , Néfrons/crescimento & desenvolvimento , Antígeno AC133/análise , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Molécula de Adesão da Célula Epitelial/análise , Humanos , Organogênese , Análise de Célula Única
16.
Mol Cancer Ther ; 16(11): 2462-2472, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28729402

RESUMO

Cancer stem cells (CSC) form a specific population within the tumor that has been shown to have self-renewal and differentiation properties, increased ability to migrate and form metastases, and increased resistance to chemotherapy. Consequently, even a small number of cells remaining after therapy can repopulate the tumor and cause recurrence of the disease. CSCs in Wilms tumor, a pediatric renal cancer, were previously shown to be characterized by neural cell adhesion molecule (NCAM) expression. Therefore, NCAM provides a specific biomarker through which the CSC population in this tumor can be targeted. We have recently developed an NCAM-targeted nanosized conjugate of paclitaxel bound to a biodegradable polyglutamic acid polymer. In this work, we examined the ability of the conjugate to inhibit Wilms tumor by targeting the NCAM-expressing CSCs. Results show that the conjugate selectively depleted the CSC population of the tumors and effectively inhibited tumor growth without causing toxicity. We propose that the NCAM-targeted conjugate could be an effective therapeutic for Wilms tumor. Mol Cancer Ther; 16(11); 2462-72. ©2017 AACR.


Assuntos
Nanoconjugados/administração & dosagem , Moléculas de Adesão de Célula Nervosa/genética , Paclitaxel/administração & dosagem , Tumor de Wilms/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Nanoconjugados/química , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Paclitaxel/química , Polímeros/administração & dosagem , Polímeros/química , Tumor de Wilms/genética , Tumor de Wilms/patologia
17.
EMBO Mol Med ; 9(4): 508-530, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28275008

RESUMO

Angiomyolipoma (AML), the most common benign renal tumor, can result in severe morbidity from hemorrhage and renal failure. While mTORC1 activation is involved in its growth, mTORC1 inhibitors fail to eradicate AML, highlighting the need for new therapies. Moreover, the identity of the AML cell of origin is obscure. AML research, however, is hampered by the lack of in vivo models. Here, we establish a human AML-xenograft (Xn) model in mice, recapitulating AML at the histological and molecular levels. Microarray analysis demonstrated tumor growth in vivo to involve robust PPARγ-pathway activation. Similarly, immunostaining revealed strong PPARγ expression in human AML specimens. Accordingly, we demonstrate that while PPARγ agonism accelerates AML growth, PPARγ antagonism is inhibitory, strongly suppressing AML proliferation and tumor-initiating capacity, via a TGFB-mediated inhibition of PDGFB and CTGF. Finally, we show striking similarity between AML cell lines and mesenchymal stem cells (MSCs) in terms of antigen and gene expression and differentiation potential. Altogether, we establish the first in vivo human AML model, which provides evidence that AML may originate in a PPARγ-activated renal MSC lineage that is skewed toward adipocytes and smooth muscle and away from osteoblasts, and uncover PPARγ as a regulator of AML growth, which could serve as an attractive therapeutic target.


Assuntos
Angiomiolipoma/patologia , PPAR gama/metabolismo , Animais , Linhagem Celular Tumoral , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais , Camundongos , Proteínas Proto-Oncogênicas c-sis/metabolismo , Terapêutica , Fator de Crescimento Transformador beta/metabolismo
19.
Sci Rep ; 6: 23562, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27020553

RESUMO

When assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms' tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1(+)CD133(-) marks SIX2(+) multipotent renal stem cells transiting to NCAM1(+)CD133(+) differentiating segment-specific SIX2(-) epithelial progenitors and NCAM1(-)CD133(+) differentiated nephron cells. In tumorigenesis, NCAM1(+)CD133(-) marks SIX2(+) blastema that includes the ALDH1(+) WT cancer stem/initiating cells, while NCAM1(+)CD133(+) and NCAM1(-)CD133(+) specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1(+) nephron stem cells in normal and malignant nephrogenesis.


Assuntos
Biomarcadores/metabolismo , Carcinogênese/genética , Rim/metabolismo , Células-Tronco Neoplásicas/metabolismo , Néfrons/metabolismo , Células-Tronco/metabolismo , Antígeno AC133/genética , Antígeno AC133/metabolismo , Animais , Antígeno CD56/genética , Antígeno CD56/metabolismo , Carcinogênese/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Lactente , Rim/embriologia , Masculino , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas/patologia , Néfrons/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organogênese/genética , Estudos Prospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Células Tumorais Cultivadas
20.
Curr Protein Pept Sci ; 5(3): 185-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15180523

RESUMO

The COP9 Signalosome (CSN), a highly conserved eight-subunit complex, is found in all higher eukaryotes. It contains eight core subunits, named CSN1-8, in order of decreasing molecular weight. The CSN is structurally similar to the regulatory lid of 26S proteasome and the eukaryotic translation initiation factor eIF3. CSN is also now known to play an essential role in signaling processes controlling many aspects of plant and Drosophila development. Taken together, the various genetic studies demonstrate that the CSN is involved at the nexus between multiple signal inputs and a variety of downstream regulatory cascades controlling specific aspects of cellular differentiation. Research in various organisms has converged onto the notion that CSN is biochemically linked to ubiquitin-dependent protein degradation. Other proposed roles for the CSN include regulating eIF3 and kinase signaling. CSN is itself is both a target for kinase activity and associates with and coordinates activity of kinases. CSN-associated kinases. This kinase activity further regulates the ubiquitin-dependent degradation of various transcription factors. This review concentrates on the proposed activity of the CSN as a regulator of protein phosphorylation.


Assuntos
Fosfotransferases/metabolismo , Complexo de Endopeptidases do Proteassoma , Subunidades Proteicas/metabolismo , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Animais , Complexo do Signalossomo COP9 , Diferenciação Celular , Drosophila , Fator de Iniciação 3 em Eucariotos/genética , Complexos Multiproteicos , Peptídeo Hidrolases/genética , Fosforilação , Plantas , Desnaturação Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA