Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695722

RESUMO

High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Islândia/epidemiologia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Genótipo , Animais Selvagens/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Genoma Viral , Aves/virologia
2.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884719

RESUMO

FTA cards and related products simplify the collection, transport, and transient storage of biological sample fluids. Here, we have compared the yield and quality of DNA and RNA released from seven different FTA cards using seven releasing/extraction methods with eleven experimental eluates. For the validation, dilution series of African swine fever virus (ASFV) positive EDTA blood and Influenza A virus (IAV) positive allantoic fluid were used. Based on our data, we conclude that direct PCR amplification without the need for additional nucleic acid extraction and purification could be suitable and more convenient for ASFV DNA release from FTA cards. In contrast, IAV RNA loads can be amplified from FTA card punches if a standard extraction procedure including a lysis step is applied. These differences between the amplifiable viral DNA and RNA after releasing and extraction are not influenced by the type of commercial FTA card or the eleven different nucleic acid releasing procedures used for the comparative analyses. In general, different commercial FTA cards were successfully used for the storage and recovery of the ASFV and IAV genetic material suitable for PCR. Nevertheless, the usage of optimized nucleic acid releasing protocols could improve the recovery of the viral genome of both viruses. Here, the application of Chelex® Resin 100 buffer mixed with 1 × Tris EDTA buffer (TE, pH 8.0) or with TED 10 (TE buffer and Dimethylsulfoxid) delivered the best results and can be used as a universal method for releasing viral DNA and RNA from FTA cards.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , RNA Viral/análise , Animais , Manejo de Espécimes , Suínos
3.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931674

RESUMO

The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation.IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported. Here, the principal compatibility of the two subtypes is shown by forcing the reassortment between copassaged H5N1 und H9N2 viruses in embryonated chicken eggs. The resulting reassortant viruses displayed a wide range of pathogenicity including attenuated phenotypes in chickens, but did not show enhanced zoonotic propensities in the ferret model.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados , Animais , Galinhas , Egito/epidemiologia , Furões , Aptidão Genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Fenótipo , Filogenia , Zoonoses
4.
Virol J ; 15(1): 8, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29325564

RESUMO

BACKGROUND: Virulent Newcastle disease virus (NDV, avian Avulavirus-1, APMV-1) induces a highly contagious and lethal systemic disease in gallinaceous poultry. APMV-1 antibody detection is used for surveillance and to control vaccination, but is hampered by cross-reactivity to other subtypes of avian Avulaviruses. Data are lacking concerning the applicability of NDV V proteins as differential diagnostic marker to distinguish vaccinated from virus-infected birds (DIVA strategy). METHODS: Full length and C-terminally truncated nucleocapsid (NP) protein, and the unique C-terminal regions of the phospho- (P) and V proteins of the NDV LaSota strain were bacterially expressed as fusion proteins with the multimerization domain of the human C4 binding protein, and used as diagnostic antigens in indirect ELISA. RESULTS: When used as diagnostic antigen in indirect ELISAs, recombinant full-length proved to be a sensitive target to detect seroconversion in chickens after APMV-1 vaccination and infection, but revealed some degree of cross reactivity with sera raised against other APMV subtypes. Cross reactivity was abolished but also sensitivity decreased when employing a C-terminal fragment of the NP of NDV as diagnostic antigen. Antibodies to the NDV V protein were mounted in poultry following NDV infection but also, albeit at lower rates and titers, after vaccination with attenuated NDV vaccines. V-specific seroconversion within the flock was incomplete and titers in individual bird transient. CONCLUSIONS: Indirect ELISA based on bacterially expressed recombinant full-length NP compared favorably with a commercial NDV ELISA based on whole virus antigen, but cross reactivity between the NP proteins of different APMV subtypes could compromise specificity. However, specificity increased when using a less conserved C-terminal fragment of NP instead. Moreover, a serological DIVA strategy built on the NDV V protein was not feasible due to reduced immunogenicity of the V protein and frequent use of live-attenuated NDV vaccines.


Assuntos
Doença de Newcastle/diagnóstico , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Fosfoproteínas , Proteínas Recombinantes , Animais , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Galinhas , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Soros Imunes/imunologia , Imunização , Fosfoproteínas/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Testes Sorológicos , Vacinas Virais/imunologia
5.
Virol J ; 15(1): 7, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29316958

RESUMO

BACKGROUND: Swine influenza is a respiratory infection of pigs that may have a significant economic impact in affected herds and pose a threat to the human population since swine influenza A viruses (swIAVs) are zoonotic pathogens. Due to the increasing genetic diversity of swIAVs and because novel reassortants or variants may become enzootic or have zoonotic implications, surveillance is strongly encouraged. Therefore, diagnostic tests and advanced technologies able to identify the circulating strains rapidly are critically important. RESULTS: Several reverse transcription real-time PCR assays (RT-qPCRs) were developed to subtype European swIAVs in clinical samples previously identified as containing IAV genome. The RT-qPCRs aimed to discriminate HA genes of four H1 genetic lineages (H1av, H1hu, H1huΔ146-147, H1pdm) and one H3 lineage, and NA genes of two N1 lineages (N1, N1pdm) and one N2 lineage. After individual validation, each RT-qPCR was adapted to high-throughput analyses in parallel to the amplification of the IAV M gene (target for IAV detection) and the ß-actin gene (as an internal control), in order to test the ten target genes simultaneously on a large number of clinical samples, using low volumes of reagents and RNA extracts. CONCLUSION: The RT-qPCRs dedicated to IAV molecular subtyping enabled the identification of swIAVs from the four viral subtypes that are known to be enzootic in European pigs, i.e. H1avN1, H1huN2, H3N2 and H1N1pdm. They also made it possible to discriminate a new antigenic variant (H1huN2Δ146-147) among H1huN2 viruses, as well as reassortant viruses, such as H1huN1 or H1avN2 for example, and virus mixtures. These PCR techniques exhibited a gain in sensitivity as compared to end-point RT-PCRs, enabling the characterization of biological samples with low genetic loads, with considerable time saving. Adaptation to high-throughput analyses appeared effective, both in terms of specificity and sensitivity. This new development opens novel perspectives in diagnostic capacities that could be very useful for swIAV surveillance and large-scale epidemiological studies.


Assuntos
Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Animais , Linhagem Celular , Cães , Europa (Continente)/epidemiologia , Genes Virais , Variação Genética , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/imunologia , Células Madin Darby de Rim Canino , Tipagem Molecular/métodos , Infecções por Orthomyxoviridae/diagnóstico , Reprodutibilidade dos Testes , Suínos
6.
J Gen Virol ; 98(6): 1169-1173, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28590242

RESUMO

In Egypt, zoonotic A/goose/Guangdong/1/96 (gs/GD-like) highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.2.1.2 is entrenched in poultry populations and has co-circulated with low-pathogenic avian influenza virus H9N2 of the G1 lineage since 2010. Here, the impact of H9N2 infection or vaccination on the course of consecutive infection with a lethal Egyptian HPAIV H5N1 is studied. Three-week-old chickens were infected with H9N2 or vaccinated with inactivated H9N2 or H5N1 antigens and challenged three weeks later by an HPAIV H5N1. Interestingly, pre-infection of chickens with H9N2 decreased the oral excretion of H5N1 to levels that were comparable to those of H5N1-immunized chickens, but vaccination with inactivated H9N2 did not. H9N2 pre-infection modulated but did not conceal clinical disease by HPAIV H5N1. By contrast, homologous H5 vaccination abolished clinical syndromic surveillance, although vaccinated clinical healthy birds were capable of spreading the virus.


Assuntos
Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Animais , Galinhas , Egito , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/imunologia , Análise de Sobrevida , Resultado do Tratamento , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Eliminação de Partículas Virais
7.
J Virol ; 90(9): 4269-4277, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26819311

RESUMO

UNLABELLED: Influenza A viruses are major pathogens for humans, domestic animals, and wildlife, and these viruses occasionally cross the species barrier. In spring 2014, increased mortality of harbor seals (Phoca vitulina), associated with infection with an influenza A(H10N7) virus, was reported in Sweden and Denmark. Within a few months, this virus spread to seals of the coastal waters of Germany and the Netherlands, causing the death of thousands of animals. Genetic analysis of the hemagglutinin (HA) and neuraminidase (NA) genes of this seal influenza A(H10N7) virus revealed that it was most closely related to various avian influenza A(H10N7) viruses. The collection of samples from infected seals during the course of the outbreak provided a unique opportunity to follow the adaptation of the avian virus to its new seal host. Sequence data for samples collected from 41 different seals from four different countries between April 2014 and January 2015 were obtained by Sanger sequencing and next-generation sequencing to describe the molecular epidemiology of the seal influenza A(H10N7) virus. The majority of sequence variation occurred in the HA gene, and some mutations corresponded to amino acid changes not found in H10 viruses isolated from Eurasian birds. Also, sequence variation in the HA gene was greater at the beginning than at the end of the epidemic, when a number of the mutations observed earlier had been fixed. These results imply that when an avian influenza virus jumps the species barrier from birds to seals, amino acid changes in HA may occur rapidly and are important for virus adaptation to its new mammalian host. IMPORTANCE: Influenza A viruses are major pathogens for humans, domestic animals, and wildlife. In addition to the continuous circulation of influenza A viruses among various host species, cross-species transmission of influenza A viruses occurs occasionally. Wild waterfowl and shorebirds are the main reservoir for most influenza A virus subtypes, and spillover of influenza A viruses from birds to humans or other mammalian species may result in major outbreaks. In the present study, various sequencing methods were used to elucidate the genetic changes that occurred after the introduction and subsequent spread of an avian influenza A(H10N7) virus among harbor seals of northwestern Europe by use of various samples collected during the outbreak. Such detailed knowledge of genetic changes necessary for introduction and adaptation of avian influenza A viruses to mammalian hosts is important for a rapid risk assessment of such viruses soon after they cross the species barrier.


Assuntos
Variação Genética , Vírus da Influenza A Subtipo H10N7/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Phoca/virologia , Análise Espaço-Temporal , Substituição de Aminoácidos , Animais , Biologia Computacional/métodos , Europa (Continente)/epidemiologia , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A Subtipo H10N7/classificação , Filogenia , Filogeografia
8.
Virol J ; 14(1): 48, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28274236

RESUMO

BACKGROUND: Vaccination of poultry to control highly pathogenic avian influenza virus (HPAIV) H5N1 is used in several countries. HPAIV H5N1 of clade 2.2.1 which is endemic in Egypt has diversified into two genetic clades. Clade 2.2.1.1 represents antigenic drift variants in vaccinated commercial poultry while clade 2.2.1.2 variants are detected in humans and backyard poultry. Little is known about H5N1 infection in vaccinated turkeys under field conditions. CASE PRESENTATION: Here, we describe an HPAI H5N1 outbreak in a vaccinated meat-turkey flock in Egypt. Birds were vaccinated with inactivated H5N2 and H5N1 vaccines at 8 and 34 days of age, respectively. At 72nd day of age (38 days post last vaccination), turkeys exhibited mild respiratory signs, cyanosis of snood and severe congestion of the internal organs. Survivors had a reduction in feed consumption and body gain. A mortality of ~29% cumulated within 10 days after the onset of clinical signs. Laboratory diagnosis using RT-qPCRs revealed presence of H5N1 but was negative for H7 and H9 subtypes. A substantial antigenic drift against different serum samples from clade 2.2.1.1 and clade 2.3.4.4 was observed. Based on full genome sequence analysis the virus belonged to clade 2.2.1.2 but clustered with recent H5N1 viruses from 2015 in poultry in Israel, Gaza and Egypt in a novel subclade designated here 2.2.1.2a which is distinct from 2014/2015 2.2.1.2 viruses. These viruses possess 2.2.1.2 clade-specific genetic signatures and also mutations in the HA similar to those in clade 2.2.1.1 that enabled evasion from humoral immune response. Taken together, this manuscript describes a recent HPAI H5N1 outbreak in vaccinated meat-turkeys in Egypt after infection with a virus representing novel distinct 2.2.1.2a subclade. CONCLUSIONS: Infection with HPAIV H5N1 in commercial turkeys resulted in significant morbidity and mortality despite of vaccination using H5 vaccines. The isolated virus showed antigenic drift and clustered in a novel cluster designated here 2.2.1.2a related to viruses in poultry in Israel, Gaza and Egypt. Enforcement of biosecurity and constant update of vaccine virus strains may be helpful to protect vaccinated birds and prevent spillover infection to neighbouring countries.


Assuntos
Surtos de Doenças , Genótipo , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Análise por Conglomerados , Egito/epidemiologia , Deriva Genética , Genoma Viral , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/mortalidade , Influenza Aviária/patologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Análise de Sobrevida , Perus
9.
J Gen Virol ; 97(12): 3193-3204, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902339

RESUMO

Highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry and continues to pose a pandemic threat. Studying the progressive genetic changes in A/H5N1 after long-term circulation in poultry may help us to better understand A/H5N1 biology in birds. A/H5N1 clade 2.2.1.1 antigenic drift viruses have been isolated from vaccinated commercial poultry in Egypt. They exhibit a peculiar stepwise accumulation of glycosylation sites (GS) in the haemagglutinin (HA) with viruses carrying, beyond the conserved 5 GS, additional GS at amino acid residues 72, 154, 236 and 273 resulting in 6, 7, 8 or 9 GS in the HA. Available information about the impact of glycosylation on virus fitness and pathobiology is mostly derived from mammalian models. Here, we generated recombinant viruses imitating the progressive acquisition of GS in HA and investigated their biological relevance in vitro and in vivo. Our in vitro results indicated that the accumulation of GS correlated with increased glycosylation, increased virus replication, neuraminidase activity, cell-to-cell spread and thermostability, however, strikingly, without significant impact on virus escape from neutralizing antibodies. In vivo, glycosylation modulated virus virulence, tissue tropism, replication and chicken-to-chicken transmission. Predominance in the field was towards viruses with hyperglycosylated HA. Together, progressive glycosylation of the HA may foster persistence of A/H5N1 by increasing replication, stability and bird-to-bird transmission without significant impact on antigenic drift.


Assuntos
Variação Antigênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/transmissão , Doenças das Aves Domésticas/virologia , Replicação Viral , Motivos de Aminoácidos , Animais , Galinhas , Egito , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Filogenia , Virulência
10.
Arch Virol ; 161(7): 1963-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27068161

RESUMO

Since 2006, in Egypt, highly pathogenic avian influenza virus (HPAIV) H5N1 has established endemic status in poultry. Bayesian evolutionary analysis sampling trees suggested an introduction date in the third quarter of 2005. Evolutionary dynamics using Bayesian analysis showed that H5N1 viruses of clade 2.2.1.1 evolved at higher rates than those of clade 2.2.1.2. Bayesian skyline plot analysis of the HA gene of 840 and NA gene of 401 Egyptian H5N1 viruses from 2006-2015 identified two waves of viral population expansion correlating with the stepwise emergence of the 2.2.1.1 variant lineage in 2008 and with the newly emerging 2.2.1.2 cluster in late 2014. H5N1 infections in human hosts in 2014-2015 were statistically linked to a contemporary poultry outbreak.


Assuntos
Evolução Molecular , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Doenças das Aves Domésticas/virologia , Animais , Surtos de Doenças , Egito/epidemiologia , Humanos , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Proteínas Virais/genética
11.
J Gen Virol ; 96(11): 3212-3222, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26350163

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 have continued to perpetuate with divergent genetic variants in poultry within Asia since 2003. Further dissemination of Asian-derived H5 HPAIVs to Europe, Africa and, most recently, to the North American continent has occurred. We report an outbreak of HPAIV H5N1 among falcons kept for hunting and other wild bird species bred as falcon prey in Dubai, United Arab Emirates, during the autumn of 2014. The causative agent was identified as avian influenza virus subtype H5N1, clade 2.3.2.1c, by genetic and phylogenetic analyses. High mortality in infected birds was in accordance with systemic pathomorphological and histological alterations in affected falcons. Genetic analysis showed the HPAIV H5N1 of clade 2.3.2.1c is a reassortant in which the PB2 segment was derived from an Asian-origin H9N2 virus lineage. The Dubai H5N1 viruses were closely related to contemporary H5N1 HPAIVs from Nigeria, Burkina-Faso, Romania and Bulgaria. Median-joining network analysis of 2.3.2.1c viruses revealed that the Dubai outbreak was an episode of a westward spread of these viruses on a larger scale from unidentified Asian sources. The incursion into Dubai, possibly via infected captive hunting falcons returning from hunting trips to central Asian countries, preceded outbreaks in Nigeria and other West African countries. The alarmingly enhanced geographical mobility of clade 2.3.2.1.c and clade 2.3.4.4 viruses may represent another wave of transcontinental dissemination of Asian-origin HPAIV H5 viruses, such as the outbreak at Qinghai Lake caused by clade 2.2 ('Qinghai' lineage) in 2005.


Assuntos
Falconiformes/virologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , Animais , Animais Selvagens/virologia , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/epidemiologia , Dados de Sequência Molecular , Filogenia , Emirados Árabes Unidos/epidemiologia
12.
J Virol ; 87(19): 10460-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23824819

RESUMO

The emergence of the human 2009 pandemic H1N1 (H1N1pdm) virus from swine populations refocused public and scientific attention on swine as an important source of influenza A viruses bearing zoonotic potential. Widespread and year-round circulation of at least four stable lineages of porcine influenza viruses between 2009 and 2012 in a region of Germany with a high-density swine population is documented here. European avian influenza virus-derived H1N1 (H1N1av) viruses dominated the epidemiology, followed by human-derived subtypes H1N2 and H3N2. H1N1pdm viruses and, in particular, recently emerging reassortants between H1N1pdm and porcine HxN2 viruses (H1pdmN2) were detected in about 8% of cases. Further reassortants between these main lineages were diagnosed sporadically. Ongoing diversification both at the phylogenetic and at the antigenic level was evident for the H1N1av lineage and for some of its reassortants. The H1avN2 reassortant R1931/11 displayed conspicuously distinct genetic and antigenic features and was easily transmitted from pig to pig in an experimental infection. Continuing diverging evolution was also observed in the H1pdmN2 lineage. These viruses carry seven genome segments of the H1N1pdm virus, including a hemagglutinin gene that encodes a markedly antigenically altered protein. The zoonotic potential of this lineage remains to be determined. The results highlight the relevance of surveillance and control of porcine influenza virus infections. This is important for the health status of swine herds. In addition, a more exhaustive tracing of the formation, transmission, and spread of new reassortant influenza A viruses with unknown zoonotic potential is urgently required.


Assuntos
Linhagem da Célula , Vírus da Influenza A Subtipo H1N2/patogenicidade , Vírus da Influenza A Subtipo H3N2/patogenicidade , Pulmão/virologia , Infecções por Orthomyxoviridae/veterinária , Síndrome do Desconforto Respiratório/virologia , Doenças dos Suínos/virologia , Animais , Alemanha/epidemiologia , Vírus da Influenza A Subtipo H1N2/classificação , Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Pulmão/imunologia , Neuraminidase/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Filogenia , RNA Viral/genética , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/genética , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/genética
13.
Virol J ; 10: 246, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23898799

RESUMO

BACKGROUND: Serological investigations of swine influenza virus infections and epidemiological conclusions thereof are challenging due to the complex and regionally variable pattern of co-circulating viral subtypes and lineages and varying vaccination regimes. Detection of subtype-specific antibodies currently depends on hemagglutination inhibition (HI) assays which are difficult to standardize and unsuitable for large scale investigations. METHODS: The nucleocapsid protein (NP) and HA1 fragments of the hemagglutinin protein (HA) of five different lineages (H1N1av, H1N1pdm, H1pdmN2, H1N2, H3N2) of swine influenza viruses were bacterially expressed and used as diagnostic antigens in indirect ELISA. RESULTS: Proteins were co-translationally mono-biotinylated and refolded in vitro into an antigenically authentic conformation. Western blotting and indirect ELISA revealed highly subtype-specific antigenic characteristics of the recombinant HA1 proteins although some cross reactivity especially among antigens of the H1 subtype were evident. Discrimination of antibodies directed against four swine influenza virus subtypes co-circulating in Germany was feasible using the indirect ELISA format. CONCLUSIONS: Bacterially expressed recombinant NP and HA1 swine influenza virus proteins served as antigens in indirect ELISAs and provided an alternative to commercial blocking NP ELISA and HI assays concerning generic (NP-specific) and HA subtype-specific sero-diagnostics, respectively, on a herd basis.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A/classificação , Infecções por Orthomyxoviridae/veterinária , Proteínas de Ligação a RNA , Doenças dos Suínos/virologia , Proteínas do Core Viral , Animais , Antígenos Virais/genética , Ensaio de Imunoadsorção Enzimática/métodos , Alemanha , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/isolamento & purificação , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/genética , Suínos , Doenças dos Suínos/imunologia , Proteínas do Core Viral/genética
14.
Viruses ; 15(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36851676

RESUMO

Low-pathogenic avian influenza (LPAI) H9N2 virus is endemic in Bangladesh, causing huge economic losses in the poultry industry. Although a considerable number of Bangladeshi LPAI H9N2 viruses have been molecularly characterized, there is inadequate information on the pathogenicity of H9N2 viruses in commercial poultry. In this study, circulating LPAI H9N2 viruses from recent field outbreaks were characterized, and their pathogenicity in commercial Sonali (crossbred) and broiler chickens was assessed. Phylogenetic analysis of currently circulating field viruses based on the hemagglutinin (HA) and neuraminidase (NA) gene sequences revealed continuous circulation of G1 lineages containing the tri-basic hemagglutinin cleavage site (HACS) motif (PAKSKR*GLF) at the HA protein. Both the LPAI susceptible Sonali and broiler chickens were infected with selected H9N2 isolates A/chicken/Bangladesh/2458-LT2/2020 or A/chicken/Bangladesh/2465-LT56/2021 using intranasal (100 µL) and intraocular (100 µL) routes with a dose of 106 EID50/mL. Infected groups (LT_2-So1 and LT_56-So2; LT_2-Br1 and LT_56-Br2) revealed no mortality or clinical signs. However, at gross and histopathological investigation, the trachea, lungs, and intestine of the LT_2-So1 and LT_56-So2 groups displayed mild to moderate hemorrhages, congestion, and inflammation at different dpi. The LT 2-Br1 and LT 56-Br2 broiler groups showed nearly identical changes in the trachea, lungs, and intestine at various dpi, indicating no influence on pathogenicity in the two commercial bird species under study. Overall, the prominent lesions were observed up to 7 dpi and started to disappear at 10 dpi. The H9N2 viruses predominantly replicated in the respiratory tract, and higher titers of virus were shed through the oropharyngeal route than the cloacal route. Finally, this study demonstrated the continuous evolution of tri-basic HACS containing H9N2 viruses in Bangladesh with a low-pathogenic phenotype causing mild to moderate tracheitis, pneumonia, and enteritis in Sonali and commercial broiler chickens.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Galinhas , Vírus da Influenza A Subtipo H9N2/genética , Hemaglutininas , Filogenia , Virulência
15.
Microbiol Spectr ; : e0266422, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700688

RESUMO

Surveillance of avian influenza viruses (AIV) in wild water bird populations is important for early warning to protect poultry from incursions of high-pathogenicity (HP) AIV. Access to individual water birds is difficult and restricted and limits sampling depth. Here, we focused on environmental samples such as surface water, sediments, and environmentally deposited fresh avian feces as matrices for AIV detection. Enrichment of viral particles by ultrafiltration of 10-L surface water samples using Rexeed-25-A devices was validated using a bacteriophage ϕ6 internal control system, and AIV detection was attempted using real-time RT-PCR and virus isolation. While validation runs suggested an average enrichment of about 60-fold, lower values of 10 to 15 were observed for field water samples. In total 25/36 (60%) of water samples and 18/36 (50%) of corresponding sediment samples tested AIV positive. Samples were obtained from shallow water bodies in habitats with large numbers of waterfowl during an HPAIV epizootic. Although AIV RNA was detected in a substantial percentage of samples virus isolation failed. Virus loads in samples often were too low to allow further sub- and pathotyping. Similar results were obtained with environmentally deposited avian feces. Moreover, the spectrum of viruses detected by these active surveillance methods did not fully mirror an ongoing HPAIV epizootic among waterfowl as detected by passive surveillance, which, in terms of sensitivity, remains unsurpassed. IMPORTANCE Avian influenza viruses (AIV) have a wide host range in the avian metapopulation and, occasionally, transmission to humans also occurs. Surface water plays a particularly important role in the epidemiology of AIV, as the natural virus reservoir is found in aquatic wild birds. Environmental matrices comprising surface water, sediments, and avian fecal matter deposited in the environment were examined for their usefulness in AIV surveillance. Despite virus enrichment efforts, environmental samples regularly revealed very low virus loads, which hampered further sub- and pathotyping. Passive surveillance based on oral and cloacal swabs of diseased and dead wild birds remained unsurpassed with respect to sensitivity.

16.
J Gen Virol ; 93(Pt 8): 1658-1663, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22622326

RESUMO

The incursion of the human pandemic influenza A virus H1N1 (2009) (H1N1 pdm) into pig populations and its ongoing co-circulation with endemic swine influenza viruses (SIVs) has yielded distinct human-porcine reassortant virus lineages. The haemagglutinin (HA) gene of H1N1 pdm was detected in 41 influenza virus-positive samples from seven swine herds in north-west Germany in 2011. Eight of these samples yielded virus that carried SIV-derived neuraminidase N2 of three different porcine lineages in an H1N1 pdm backbone. The HA sequences of these viruses clustered in two distinct groups and were distinguishable from human and other porcine H1 pdm by a unique set of eight non-synonymous mutations. In contrast to the human population, where H1N1 pdm replaced seasonal H1N1, this virus seems to co-circulate and interact more intensely with endemic SIV lineages, giving rise to reassortants with as-yet-unknown biological properties and undetermined risks for public health.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/veterinária , Vírus Reordenados/genética , Doenças dos Suínos/virologia , Animais , Antígenos Virais/genética , Doenças Transmissíveis Emergentes/veterinária , Doenças Endêmicas/veterinária , Alemanha/epidemiologia , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A/classificação , Camundongos , Dados de Sequência Molecular , Mutação , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Pandemias , Filogenia , Alinhamento de Sequência , Suínos , Doenças dos Suínos/epidemiologia
17.
Virus Genes ; 45(1): 14-23, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22669540

RESUMO

An evolutionary analysis was conducted of 354 hemagglutinin (HA) and 208 neuraminidase (NA) genes, including newly generated sequences of 5 HA and 30 NA, of Egyptian H5N1 clade 2.2.1 viruses isolated from poultry and humans. Five distinct phylogenetically distinguishable clusters arose from a monophyletic origin since 2006. Only two clusters remained in circulation after 2009: (i) A cluster of viruses arose in 2007 in industrial-vaccinated chickens and carried multiple mutations in or adjacent to the immunogenic epitopes of the HA. Viruses within this cluster evolved with significantly elevated mutation rates indicating persisting selective pressures, e.g. to escape host immunity and (ii) The second group arose in 2008 and harboured strains from recent human infections featuring a conspicuous deletion in the HA receptor-binding domain and substitutions close to the highly conserved active site of the NA. In both sublineages, a number of positively selected amino acids, different glycosylation patterns and variations in the polybasic proteolytic cleavage site were observed. Continuous monitoring of the evolving H5N1 virus in Egypt is essential to develop new control campaigns in poultry and human population.


Assuntos
Evolução Molecular , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Galinhas/virologia , Patos/virologia , Egito/epidemiologia , Doenças Endêmicas , Gansos/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Mutação , Neuraminidase/genética , Filogenia , Doenças das Aves Domésticas/virologia , Análise de Sequência de DNA , Perus/virologia
18.
Avian Dis ; 56(4 Suppl): 955-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23402118

RESUMO

Virologic monitoring of avian influenza viruses (AIV) mainly relies on the collection of oropharyngeal, cloacal, or fecal swab samples. The quality of swab samples, therefore, contributes to limitations of the informative value of such monitoring, but the cost of sampling has a great impact on the feasibility of wild bird monitoring studies or poultry surveillance programs. Here, the effect of different swab material and storage conditions on quality and quantity of AIV RNA detection in swab samples by real-time reverse-transcription quantitative PCR has been studied. Two commercial swab products, a rayon-tipped and a flocked nylon type, were compared. Similar suitability of the two swab types, despite a huge price difference, was observed. Superior results by using both types of swab were gained provided that 1) swabs stayed immersed overnight in an appropriate viral transport medium (VTM), or that 2) swabs were vigorously shaken in VTM for at least 1 min and up to 1 hr to release as much trapped virus material as possible. Degradation of RNA over a period of 2 wk for virus-containing samples is negligible when using constant storage conditions at 4 C or 20 C; temperature shifts proved to be more harmful.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Aviária/diagnóstico , RNA Viral/isolamento & purificação , Manejo de Espécimes/veterinária , Animais , Aves , Influenza Aviária/virologia , Manejo de Espécimes/métodos , Temperatura , Fatores de Tempo
20.
Pathogens ; 11(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36145491

RESUMO

Virulent Newcastle disease virus (NDV) as well as highly pathogenic avian influenza (HPAIV) subtypes H5 and H7 induce contagious and lethal systemic disease in poultry. In contrast, low pathogenic AIV H5 and H7 may circulate clinically unnoticed in poultry but eventually generate HPAIV. Low pathogenic NDV strains are widely used as live-attenuated vaccines against ND. Serological tools are essential to conduct active surveillance for infections with notifiable AIV-H5, -H7 and to control vaccination against NDV and HPAIV in poultry populations. Here, recombinant nucleocapsid proteins (NP) of AIV and NDV, and haemagglutinin protein fragment-1 (HA1) of AIV subtypes H5 and H7 were expressed in E. coli. Purification and refolding were required before coating fluorescent microspheres via streptavidin-biotin linkage. The tetraplexed inhibition fluorescent microsphere immunoassay (iFMIA) was then assembled for analysis on a Luminex®-like platform (Bioplex®) using murine monoclonal antibodies specific for each of the four targets. The assay was evaluated by testing galliform poultry sera derived from experimental infections (n = 257) and from farms (n = 250), respectively. The tetraplex iFMIA compared favorably with commercially available ELISAs and the "gold standard" hemagglutination inhibition assay. Tetraplexed iFMIA provided a specific and sensitive tool to detect and discriminate AIV- and NDV-specific antibodies in the sera of galliform poultry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA