RESUMO
When unfolded proteins accumulate in the endoplasmic reticulum (ER), the unfolded protein response (UPR) increases ER-protein-folding capacity to restore protein-folding homeostasis. Unfolded proteins activate UPR signaling across the ER membrane to the nucleus by promoting oligomerization of IRE1, a conserved transmembrane ER stress receptor. However, the coupling of ER stress to IRE1 oligomerization and activation has remained obscure. Here, we report that the ER luminal co-chaperone ERdj4/DNAJB9 is a selective IRE1 repressor that promotes a complex between the luminal Hsp70 BiP and the luminal stress-sensing domain of IRE1α (IRE1LD). In vitro, ERdj4 is required for complex formation between BiP and IRE1LD. ERdj4 associates with IRE1LD and recruits BiP through the stimulation of ATP hydrolysis, forcibly disrupting IRE1 dimers. Unfolded proteins compete for BiP and restore IRE1LD to its default, dimeric, and active state. These observations establish BiP and its J domain co-chaperones as key regulators of the UPR.
Assuntos
Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Animais , Cricetinae , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Humanos , Dobramento de ProteínaRESUMO
The small molecule ISRIB antagonizes the activation of the integrated stress response (ISR) by phosphorylated translation initiation factor 2, eIF2(αP). ISRIB and eIF2(αP) bind distinct sites in their common target, eIF2B, a guanine nucleotide exchange factor for eIF2. We have found that ISRIB-mediated acceleration of eIF2B's nucleotide exchange activity in vitro is observed preferentially in the presence of eIF2(αP) and is attenuated by mutations that desensitize eIF2B to the inhibitory effect of eIF2(αP). ISRIB's efficacy as an ISR inhibitor in cells also depends on presence of eIF2(αP). Cryoelectron microscopy (cryo-EM) showed that engagement of both eIF2B regulatory sites by two eIF2(αP) molecules remodels both the ISRIB-binding pocket and the pockets that would engage eIF2α during active nucleotide exchange, thereby discouraging both binding events. In vitro, eIF2(αP) and ISRIB reciprocally opposed each other's binding to eIF2B. These findings point to antagonistic allostery in ISRIB action on eIF2B, culminating in inhibition of the ISR.
Assuntos
Acetamidas/química , Cicloexilaminas/química , Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/química , Regulação Alostérica , Animais , Sítios de Ligação , Células CHO , Cricetulus , Microscopia Crioeletrônica , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Células HeLa , Humanos , FosforilaçãoRESUMO
Effector mechanisms of the unfolded protein response (UPR) in the endoplasmic reticulum (ER) are well-characterised, but how ER proteostasis is sensed is less well understood. Here, we exploited the beta isoform of the UPR transducer IRE1, that is specific to mucin-producing cells in order to gauge the relative regulatory roles of activating ligands and repressing chaperones of the specialised ER of goblet cells. Replacement of the stress-sensing luminal domain of endogenous IRE1α in CHO cells (normally expressing neither mucin nor IRE1ß) with the luminal domain of IRE1ß deregulated basal IRE1 activity. The mucin-specific chaperone AGR2 repressed IRE1 activity in cells expressing the domain-swapped IRE1ß/α chimera, but had no effect on IRE1α. Introduction of the goblet cell-specific client MUC2 reversed AGR2-mediated repression of the IRE1ß/α chimera. In vitro, AGR2 actively de-stabilised the IRE1ß luminal domain dimer and formed a reversible complex with the inactive monomer. These features of the IRE1ß-AGR2 couple suggest that active repression of IRE1ß by a specialised mucin chaperone subordinates IRE1 activity to a proteostatic challenge unique to goblet cells, a challenge that is otherwise poorly recognised by the pervasive UPR transducers.
Assuntos
Endorribonucleases , Células Caliciformes , Mucinas , Animais , Cricetinae , Humanos , Cricetulus , Células Caliciformes/metabolismo , Chaperonas Moleculares/genética , Mucinas/genética , Mucoproteínas/genética , Proteínas Oncogênicas , Proteínas Serina-Treonina Quinases/genética , Células CHORESUMO
Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.
Assuntos
Fator de Iniciação 2 em Eucariotos , Processamento de Proteína Pós-Traducional , Animais , Humanos , Actinas/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismoRESUMO
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Metformin, the world's most prescribed anti-diabetic drug, is also effective in preventing type 2 diabetes in people at high risk1,2. More than 60% of this effect is attributable to the ability of metformin to lower body weight in a sustained manner3. The molecular mechanisms by which metformin lowers body weight are unknown. Here we show-in two independent randomized controlled clinical trials-that metformin increases circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15), which has been shown to reduce food intake and lower body weight through a brain-stem-restricted receptor. In wild-type mice, oral metformin increased circulating GDF15, with GDF15 expression increasing predominantly in the distal intestine and the kidney. Metformin prevented weight gain in response to a high-fat diet in wild-type mice but not in mice lacking GDF15 or its receptor GDNF family receptor α-like (GFRAL). In obese mice on a high-fat diet, the effects of metformin to reduce body weight were reversed by a GFRAL-antagonist antibody. Metformin had effects on both energy intake and energy expenditure that were dependent on GDF15, but retained its ability to lower circulating glucose levels in the absence of GDF15 activity. In summary, metformin elevates circulating levels of GDF15, which is necessary to obtain its beneficial effects on energy balance and body weight, major contributors to its action as a chemopreventive agent.
Assuntos
Peso Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/metabolismo , Metformina/farmacologia , Administração Oral , Adulto , Idoso , Animais , Glicemia/análise , Glicemia/metabolismo , Dieta Hiperlipídica , Método Duplo-Cego , Ingestão de Energia/efeitos dos fármacos , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Feminino , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/antagonistas & inibidores , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator 15 de Diferenciação de Crescimento/sangue , Fator 15 de Diferenciação de Crescimento/deficiência , Fator 15 de Diferenciação de Crescimento/genética , Homeostase/efeitos dos fármacos , Humanos , Intestinos/citologia , Intestinos/efeitos dos fármacos , Masculino , Metformina/administração & dosagem , Camundongos , Camundongos Obesos , Pessoa de Meia-Idade , Redução de Peso/efeitos dos fármacosRESUMO
Signaling in the most conserved branch of the endoplasmic reticulum (ER) unfolded protein response (UPR) is initiated by sequence-specific cleavage of the HAC1/XBP1 mRNA by the ER stress-induced kinase-endonuclease IRE1. We have discovered that the flavonol quercetin activates yeast IRE1's RNase and potentiates activation by ADP, a natural activating ligand that engages the IRE1 nucleotide-binding cleft. Enzyme kinetics and the structure of a cocrystal of IRE1 complexed with ADP and quercetin reveal engagement by quercetin of an unanticipated ligand-binding pocket at the dimer interface of IRE1's kinase extension nuclease (KEN) domain. Analytical ultracentrifugation and crosslinking studies support the preeminence of enhanced dimer formation in quercetin's mechanism of action. These findings hint at the existence of endogenous cytoplasmic ligands that may function alongside stress signals from the ER lumen to modulate IRE1 activity and at the potential for the development of drugs that modify UPR signaling from this unanticipated site.
Assuntos
Endorribonucleases/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Endorribonucleases/genética , Ligantes , Glicoproteínas de Membrana/genética , Fosfotransferases/genética , Fosfotransferases/metabolismo , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Ribonucleases/genética , Ribonucleases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation.
Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Células-Tronco Neurais/patologia , eIF-2 Quinase/metabolismo , Adulto , Animais , Apoptose , Western Blotting , Carcinogênese/metabolismo , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Cerebelares/enzimologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Ativação Enzimática/fisiologia , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Lactente , Masculino , Meduloblastoma/enzimologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios/patologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The eukaryotic translation initiation factor 2α (eIF2α) phosphorylation-dependent integrated stress response (ISR), a component of the unfolded protein response, has long been known to regulate intermediary metabolism, but the details are poorly worked out. We report that profiling of mRNAs of transgenic mice harboring a ligand-activated skeletal muscle-specific derivative of the eIF2α protein kinase R-like ER kinase revealed the expected up-regulation of genes involved in amino acid biosynthesis and transport but also uncovered the induced expression and secretion of a myokine, fibroblast growth factor 21 (FGF21), that stimulates energy consumption and prevents obesity. The link between the ISR and FGF21 expression was further reinforced by the identification of a small-molecule ISR activator that promoted Fgf21 expression in cell-based screens and by implication of the ISR-inducible activating transcription factor 4 in the process. Our findings establish that eIF2α phosphorylation regulates not only cell-autonomous proteostasis and amino acid metabolism, but also affects non-cell-autonomous metabolic regulation by induced expression of a potent myokine.
Assuntos
Aminoácidos/metabolismo , Metabolismo Energético/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Crescimento de Fibroblastos/biossíntese , Regulação da Expressão Gênica/fisiologia , Músculo Esquelético/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Aminoácidos/genética , Animais , Fator de Iniciação 2 em Eucariotos/genética , Fatores de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Fosforilação/genéticaRESUMO
SNPs in the first intron of FTO (fat mass and obesity associated) are strongly associated with human obesity. While it is not yet formally established that this effect is mediated through the actions of the FTO protein itself, loss of function mutations in FTO or its murine homologue Fto result in severe growth retardation, and mice globally overexpressing FTO are obese. The mechanisms through which FTO influences growth and body composition are unknown. We describe a role for FTO in the coupling of amino acid levels to mammalian target of rapamycin complex 1 signaling. These findings suggest that FTO may influence body composition through playing a role in cellular nutrient sensing.
Assuntos
Aminoácidos/metabolismo , Composição Corporal/genética , Obesidade/genética , Proteínas/genética , Proteínas/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Fracionamento Celular , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Fibroblastos , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Endoplasmic reticulum (ER) lumenal protein thiol redox balance resists dramatic variation in unfolded protein load imposed by diverse physiological challenges including compromise in the key upstream oxidases. Lumenal calcium depletion, incurred during normal cell signaling, stands out as a notable exception to this resilience, promoting a rapid and reversible shift towards a more reducing poise. Calcium depletion induced ER redox alterations are relevant to physiological conditions associated with calcium signaling, such as the response of pancreatic cells to secretagogues and neuronal activity. The core components of the ER redox machinery are well characterized; however, the molecular basis for the calcium-depletion induced shift in redox balance is presently obscure. RESULTS: In vitro, the core machinery for generating disulfides, consisting of ERO1 and the oxidizing protein disulfide isomerase, PDI1A, was indifferent to variation in calcium concentration within the physiological range. However, ER calcium depletion in vivo led to a selective 2.5-fold decline in PDI1A mobility, whereas the mobility of the reducing PDI family member, ERdj5 was unaffected. In vivo, fluorescence resonance energy transfer measurements revealed that declining PDI1A mobility correlated with formation of a complex with the abundant ER chaperone calreticulin, whose mobility was also inhibited by calcium depletion and the calcium depletion-mediated reductive shift was attenuated in cells lacking calreticulin. Measurements with purified proteins confirmed that the PDI1A-calreticulin complex dissociated as Ca(2+) concentrations approached those normally found in the ER lumen ([Ca(2+)]K(0.5max) = 190 µM). CONCLUSIONS: Our findings suggest that selective sequestration of PDI1A in a calcium depletion-mediated complex with the abundant chaperone calreticulin attenuates the effective concentration of this major lumenal thiol oxidant, providing a plausible and simple mechanism for the observed shift in ER lumenal redox poise upon physiological calcium depletion.
Assuntos
Cálcio/deficiência , Difusão , Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Células COS , Cálcio/metabolismo , Calreticulina/metabolismo , Chlorocebus aethiops , Dissulfetos/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Oxirredução , Ligação ProteicaRESUMO
FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations.
Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microfluídica/métodos , Células HEK293 , Humanos , Proteínas Luminescentes/metabolismoRESUMO
Vanishing white matter disease (VWMD) is an inherited autosomal-recessive hypomyelinating disease caused by mutations in eukaryotic translation initiation factor 2B (eIF2B). eIF2B mutations predominantly affect the brain white matter, and the characteristic features of VWMD pathology include myelin loss and foamy oligodendrocytes. Activation of pancreatic endoplasmic reticulum kinase (PERK) has been observed in oligodendrocytes in VWMD. PERK activation in response to endoplasmic reticulum stress attenuates eIF2B activity by phosphorylating eIF2α, suggesting that impaired eIF2B activity in oligodendrocytes induced by VWMD mutations or PERK activation exploit similar mechanisms to promote selective white matter pathology in VWMD. Using transgenic mice that allow for temporally controlled activation of PERK specifically in oligodendrocytes, we discovered that strong PERK activation in oligodendrocytes during development suppressed eIF2B activity and reproduced the characteristic features of VWMD in mice, including hypomyelinating phenotype, foamy oligodendrocytes, and myelin loss. Notably, impaired eIF2B activity induced by PERK activation in oligodendrocytes of fully myelinated adult mice had minimal effects on morphology or function. Our observations point to a cell-autonomous role of impaired eIF2B activity in myelinating oligodendrocytes in the pathogenesis of VWMD.
Assuntos
Leucoencefalopatias/metabolismo , Oligodendroglia/metabolismo , eIF-2 Quinase/metabolismo , Animais , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Camundongos , Bainha de Mielina/metabolismo , Oligodendroglia/patologia , Especificidade de Órgãos , eIF-2 Quinase/genéticaRESUMO
Remyelination occurs in multiple sclerosis (MS) lesions but is generally considered to be insufficient. One of the major challenges in MS research is to understand the causes of remyelination failure and to identify therapeutic targets that promote remyelination. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress modulates cell viability and function under stressful conditions. There is evidence that PERK is activated in remyelinating oligodendrocytes in demyelinated lesions in both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). In this study, we sought to determine the role of PERK signaling in remyelinating oligodendrocytes in MS and EAE using transgenic mice that allow temporally controlled activation of PERK signaling specifically in oligodendrocytes. We demonstrated that persistent PERK activation was not deleterious to myelinating oligodendrocytes in young, developing mice or to remyelinating oligodendrocytes in cuprizone-induced demyelinated lesions. We found that enhancing PERK activation, specifically in (re)myelinating oligodendrocytes, protected the cells and myelin against the detrimental effects of interferon-γ, a key proinflammatory cytokine in MS and EAE. More important, we showed that enhancing PERK activation in remyelinating oligodendrocytes at the recovery stage of EAE promoted cell survival and remyelination in EAE demyelinated lesions. Thus, our data provide direct evidence that PERK activation cell-autonomously enhances the survival and preserves function of remyelinating oligodendrocytes in immune-mediated demyelinating diseases.
Assuntos
Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Bainha de Mielina/patologia , Oligodendroglia/patologia , eIF-2 Quinase/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Axônios/ultraestrutura , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cuprizona , Citoproteção/efeitos dos fármacos , Doenças Desmielinizantes/enzimologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Ativação Enzimática/efeitos dos fármacos , Inflamação/patologia , Interferon gama/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/enzimologia , Oligodendroglia/imunologia , Transdução de Sinais/efeitos dos fármacos , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Tremor/enzimologia , Tremor/patologiaRESUMO
IRE1 couples endoplasmic reticulum unfolded protein load to RNA cleavage events that culminate in the sequence-specific splicing of the Xbp1 mRNA and in the regulated degradation of diverse membrane-bound mRNAs. We report on the identification of a small molecule inhibitor that attains its selectivity by forming an unusually stable Schiff base with lysine 907 in the IRE1 endonuclease domain, explained by solvent inaccessibility of the imine bond in the enzyme-inhibitor complex. The inhibitor (abbreviated 4µ8C) blocks substrate access to the active site of IRE1 and selectively inactivates both Xbp1 splicing and IRE1-mediated mRNA degradation. Surprisingly, inhibition of IRE1 endonuclease activity does not sensitize cells to the consequences of acute endoplasmic reticulum stress, but rather interferes with the expansion of secretory capacity. Thus, the chemical reactivity and sterics of a unique residue in the endonuclease active site of IRE1 can be exploited by selective inhibitors to interfere with protein secretion in pathological settings.
Assuntos
Cumarínicos/farmacologia , Endorribonucleases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , Animais , Sítios de Ligação , Cumarínicos/química , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/antagonistas & inibidores , Humanos , Lisina/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Ribonucleases/antagonistas & inibidores , Ribonucleases/metabolismo , Bases de Schiff/química , Bases de Schiff/metabolismo , Via Secretória/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-BoxRESUMO
There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.
Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/terapia , Oligodendroglia/fisiologia , Transdução de Sinais/fisiologia , eIF-2 Quinase/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imunossupressores/farmacologia , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/genética , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/genética , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/ultraestrutura , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Fatores de Tempo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/genéticaRESUMO
Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.
Assuntos
Fator 6 Ativador da Transcrição , Sistemas CRISPR-Cas , Calreticulina , Cricetulus , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Calreticulina/metabolismo , Calreticulina/genética , Animais , Células CHO , Humanos , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de SinaisRESUMO
Loss-of-function mutations in EIF2AK3, encoding the pancreatic endoplasmic reticulum (ER) kinase, PERK, are associated with dysfunction of the endocrine pancreas and diabetes. However, to date it has not been possible to uncouple the long term developmental effects of PERK deficiency from sensitization to physiological levels of ER unfolded protein stress upon interruption of PERK modulation of protein synthesis rates. Here, we report that a selective PERK inhibitor acutely deregulates protein synthesis in freshly isolated islets of Langerhans, across a range of glucose concentrations. Acute loss of the PERK-mediated strand of the unfolded protein response leads to rapid accumulation of misfolded pro-insulin in cultured beta cells and is associated with a kinetic defect in pro-insulin processing. These in vitro observations uncouple the latent role of PERK in beta cell development from the regulation of unfolded protein flux through the ER and attest to the importance of the latter in beta cell proteostasis.
Assuntos
Retículo Endoplasmático/enzimologia , Células Secretoras de Insulina/enzimologia , Insulina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , eIF-2 Quinase/antagonistas & inibidores , Animais , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Glucose/metabolismo , Técnicas In Vitro , Insulina/química , Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Knockout , Biossíntese de Proteínas/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Ratos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismoRESUMO
Genomewide-association studies have revealed that SNPs (single nucleotide polymorphisms) in FTO (fat mass and obesity-associated) are robustly associated with BMI (body mass index) and obesity. FTO is an Fe(II) 2-OG (2-oxoglutarate)-dependent dioxygenase that can demethylate 3-meT (3-methylthymine) in single-stranded DNA, as well as 3-meU (3-methyluracil) and N6-methyl adenosine in RNA. In the present paper we describe the development of an RNase-cleavage assay measuring the demethylation activity of FTO on 3-meU. RNase A cleaves at the 3'-end of pyrimidines, including uracil, and a methyl group at position three of uracil inhibits cleavage. An oligonucleotide probe was designed consisting of a DNA stem, an RNA loop containing a single 3-meU as the only RNase A-cleavage site, a fluorescent reporter on one end and a quencher at the other end. FTO demethylation of the unique 3-meU enables RNase A cleavage, releasing the quencher and enabling a fluorescent signal. In the presence of excess RNase A, FTO activity is limiting to the development of fluorescent signal, which can be read continuously and is able to discriminate between wild-type and the catalytically dead R316Q FTO. 2-OG is a co-substrate of FTO and, as a metabolite in the citric acid cycle, is a marker of intracellular nutritional status. The assay described in the present paper was used to measure, for the first time, the K(m) of FTO for 2-OG. The K(m) of 2.88 µM is up to 10-fold lower than the estimated intracellular concentrations of 2-OG, rendering it unlikely that FTO functions as a sensor for 2-OG levels.
Assuntos
Técnicas Biossensoriais/métodos , Índice de Massa Corporal , Ácidos Cetoglutáricos/metabolismo , Proteínas/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Técnicas Biossensoriais/normas , Metilação de DNA/genética , Humanos , Cinética , Obesidade , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Proteínas/fisiologia , Reprodutibilidade dos Testes , Especificidade por Substrato/genéticaRESUMO
Dysfunction of the endoplasmic reticulum (ER) in insulin-producing beta cells results in cell loss and diabetes mellitus. Here we report on five individuals from three different consanguineous families with infancy-onset diabetes mellitus and severe neurodevelopmental delay caused by a homozygous p.(Arg371Ser) mutation in FICD. The FICD gene encodes a bifunctional Fic domain-containing enzyme that regulates the ER Hsp70 chaperone, BiP, via catalysis of two antagonistic reactions: inhibitory AMPylation and stimulatory deAMPylation of BiP. Arg371 is a conserved residue in the Fic domain active site. The FICDR371S mutation partially compromises BiP AMPylation in vitro but eliminates all detectable deAMPylation activity. Overexpression of FICDR371S or knock-in of the mutation at the FICD locus of stressed CHO cells results in inappropriately elevated levels of AMPylated BiP and compromised secretion. These findings, guided by human genetics, highlight the destructive consequences of de-regulated BiP AMPylation and raise the prospect of tuning FICD's antagonistic activities towards therapeutic ends.