RESUMO
Background: Haemostasis is a crucial process by which the body stops bleeding. It is achieved by the formation of a platelet plug, which is strengthened by formation of a fibrin mesh mediated by the coagulation cascade. In proinflammatory and prothrombotic conditions, multiple interactions of the complement system and the coagulation cascade are known to aggravate thromboinflammatory processes and increase the risk of arterial and venous thrombosis. Whether those interactions also play a relevant role during the physiological process of haemostasis is not yet completely understood. The aim of this study was to investigate the potential role of complement components and activation during the haemostatic response to mechanical vessel injury. Methods: We used a microvascular bleeding model that simulates a blood vessel, featuring human endothelial cells, perfusion with fresh human whole blood, and an inducible mechanical injury to the vessel. We studied the effects of complement inhibitors against components of the lectin (MASP-1, MASP-2), classical (C1s), alternative (FD) and common pathways (C3, C5), as well as a novel triple fusion inhibitor of all three complement pathways (TriFu). Effects on clot formation were analysed by recording of fibrin deposition and the platelet activation marker CD62P at the injury site in real time using a confocal microscope. Results: With the inhibitors targeting MASP-2 or C1s, no significant reduction of fibrin formation was observed, while platelet activation was significantly reduced in the presence of the FD inhibitor. Both common pathway inhibitors targeting C3 or C5, respectively, were associated with a substantial reduction of fibrin formation, and platelet activation was also reduced in the presence of the C3 inhibitor. Triple inhibition of all three activation pathways at the C3-convertase level by TriFu reduced both fibrin formation and platelet activation. When several complement inhibitors were directly compared in two individual donors, TriFu and the inhibitors of MASP-1 and C3 had the strongest effects on clot formation. Conclusion: The observed impact of complement inhibition on reducing fibrin clot formation and platelet activation suggests a role of the complement system in haemostasis, with modulators of complement initiation, amplification or effector functions showing distinct profiles. While the interactions between complement and coagulation might have evolved to support haemostasis and protect against bleeding in case of vessel injury, they can turn harmful in pathological conditions when aggravating thromboinflammation and promoting thrombosis.
RESUMO
This chapter describes the development of a poly(dimethylsiloxane)-based microfluidic platform that is able to holistically assess and visualize the entire hemostatic process in vitro. The microfluidic platform includes (1) integration of intact endothelium, (2) physiological flow conditions, (3) controlled mechanical injury to study global hemostatic potential of a patient's whole blood samples in a microvascular model and for dissecting pathophysiologic mechanisms of diseases.
Assuntos
Hemostasia , Hemorragia , Hemostáticos , Humanos , MicrofluídicaRESUMO
Advances in microfabrication techniques have enabled the production of inexpensive and reproducible microfluidic systems for conducting biological and biochemical experiments at the micro- and nanoscales (1,2). In addition, microfluidics have also been specifically used to quantitatively analyze hematologic and microvascular processes, because of their ability to easily control the dynamic fluidic environment and biological conditions(3-6). As such, researchers have more recently used microfluidic systems to study blood cell deformability, blood cell aggregation, microvascular blood flow, and blood cell-endothelial cell interactions(6-13).However, these microfluidic systems either did not include cultured endothelial cells or were larger than the sizescale relevant to microvascular pathologic processes. A microfluidic platform with cultured endothelial cells that accurately recapitulates the cellular, physical, and hemodynamic environment of the microcirculation is needed to further our understanding of the underlying biophysical pathophysiology of hematologic diseases that involve the microvasculature. Here, we report a method to create an "endothelialized" in vitro model of the microvasculature, using a simple, single mask microfabrication process in conjunction with standard endothelial cell culture techniques, to study pathologic biophysical microvascular interactions that occur in hematologic disease. This "microvasculature-on-a-chip" provides the researcher with a robust assay that tightly controls biological as well as biophysical conditions and is operated using a standard syringe pump and brightfield/fluorescence microscopy. Parameters such as microcirculatory hemodynamic conditions, endothelial cell type, blood cell type(s) and concentration(s), drug/inhibitory concentration etc., can all be easily controlled. As such, our microsystem provides a method to quantitatively investigate disease processes in which microvascular flow is impaired due to alterations in cell adhesion, aggregation, and deformability, a capability unavailable with existing assays.