Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Recept Signal Transduct Res ; : 1-15, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39314078

RESUMO

G protein-coupled receptors (GPCRs) are important targets in drug discovery because of their roles in physiological and pathological processes. Orphan GPCRs are GPCR proteins for which endogenous ligands have not yet been identified and they present interesting avenues for therapeutic intervention. This study focuses on GPR78, an orphan GPCR that is expressed in the central nervous system and linked to neurological disorders. GPR78 has no reported crystal structure and there is limited research. In this study, we have predicted the three dimensional model of GPR78 and its probable binding pocket. Structure-based virtual screening was carried out using the ChemDiv and Enamine REAL databases, followed by induced-fit docking studies to identify potential lead compounds with favorable interactions. These lead compounds were then embedded into a POPC lipid bilayer for a 200 ns molecular dynamics simulation. Free energy landscapes and MM-PBSA analyses were performed to assess the binding energies and conformational dynamics. The results highlight the dynamic nature of GPR78 in the presence of lead compounds and show favorable binding interactions. This study aims to predict a reliable three dimensional model of GPR78 and identify novel lead compounds through a comprehensive in silico approach. The identification of these potential GPR78 agonists represents a significant step in the development of new therapeutics for neurological disorders, highlighting the therapeutic potential of orphan GPR78 in CNS disorders.

3.
Luminescence ; 39(9): e4892, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39239788

RESUMO

Herein, we describe the design and development of a new cell-permeable aggregation-induced emission (AIE) active 3-ethoxysalicylaldimine-based symmetrical azine molecule HDBE. The synthesized compound underwent comprehensive investigation of different spectroscopic methods, like NMR, mass and single crystal X-ray diffraction analysis. The fluorophore HDBE exhibited the bright orange colour AIE behaviour in THF-H2O mixture. The drastic enhancement of emission was achieved upon adding the water to the THF solution of HDBE, with a concentration of 90%. Along with the dynamic light scattering (DLS) and quantum yield measurements, the formation of aggregates was also verified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Further, HDBE demonstrated excited state intramolecular proton transfer (ESIPT) characteristics in different polarity of solvents, which was corroborated by absorption, emission and lifetime spectroscopical investigations. The detailed scrutiny of X-ray structure of HDBE displayed the two strong intramolecular hydrogen bonding interactions, while solid-state fluorescent spectra showed dual emission that corresponds to enol and keto form confirming the ESIPT feature. Further, the synthesized AIE molecule was non-toxic and cell-permeable, making it easy to label as a biomarker in live HeLa cells via fluorescent bioimaging. These studies offer a quick and easy way to develop both AIE and ESIPT-coupled molecules for live cell bioimaging applications.


Assuntos
Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Células HeLa , Imagem Óptica , Estrutura Molecular , Cor , Prótons , Sobrevivência Celular/efeitos dos fármacos
4.
Inorg Chem ; 62(30): 11761-11774, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37459067

RESUMO

Half-sandwich Ru(II) complexes containing nitro-substituted furoylthiourea ligands, bearing the general formula [(η6-p-cymene)RuCl2(L)] (1-6) and [(η6-p-cymene)RuCl(L)(PPh3)]+ (7--12), have been synthesized and characterized. In contrast to the spectroscopic data which revealed monodentate coordination of the ligands to the Ru(II) ion via a "S" atom, single crystal X-ray structures revealed an unusual bidentate N, S coordination with the metal center forming a four-membered ring. Interaction studies by absorption, emission, and viscosity measurements revealed intercalation of the Ru(II) complexes with calf thymus (CT) DNA. The complexes showed good interactions with bovine serum albumin (BSA) as well. Further, their cytotoxicity was explored exclusively against breast cancer cells, namely, MCF-7, T47-D, and MDA-MB-231, wherein all of the complexes were found to display more pronounced activity than their ligand counterparts. Complexes 7-12 bearing triphenylphosphine displayed significant cytotoxicity, among which complex 12 showed IC50 values of 0.6 ± 0.9, 0.1 ± 0.8, and 0.1 ± 0.2 µM against MCF-7, T47-D, and MDA-MB-231 cell lines, respectively. The most active complexes were tested for their mode of cell death through staining assays, which confirmed apoptosis. The upregulation of apoptotic inducing and downregulation of apoptotic suppressing proteins as inferred from the western blot analysis also corroborated the apoptotic mode of cell death. The active complexes effectively generated reactive oxygen species (ROS) in MDA-MB-231 cells as analyzed from the 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining. Finally, in vivo studies of the highly active complexes (6 and 12) were performed on the mice model. Histological analyses revealed that treatment with these complexes at high doses of up to 8 mg/kg did not induce any visible damage to the tested organs.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Animais , Camundongos , Ligantes , Complexos de Coordenação/química , Cimenos/farmacologia , Cimenos/química , Apoptose , Antineoplásicos/química , Rutênio/farmacologia , Rutênio/química , Linhagem Celular Tumoral
5.
Inorg Chem ; 62(8): 3679-3691, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36780329

RESUMO

We set out to design and synthesize bipodal ligands with the phenyl group as the spacer and varied the substitution on the spacer between ortho (L1), meta (L2), and para (L3). The respective ligands and complexes containing either p-cymene (PL1-PL3) or benzene (BL1-BL3) as the arene unit were synthesized and characterized successfully. The influence of the ligands due to substitution change on their coordination behavior was quite minimal; however, the differences were seen in the anticancer activity of the complexes. DFT studies revealed the structural variations between the three different substitutions, which was further confirmed by single-crystal X-ray diffraction studies. The anticancer activity of the complexes could be correlated with their rate of hydrolysis and their lipophilicity index as determined by UV-visible spectroscopy. The cell death mechanism of the active complexes was deduced to be apoptotic via staining assays, flow cytometry, and Western blot analysis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Linhagem Celular Tumoral , Antineoplásicos/química , Complexos de Coordenação/química , Ligantes , Cimenos , Rutênio/química
6.
J Fluoresc ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995072

RESUMO

A novel probe ITQ (9-(((E)-1 H-inden-1-ylidene)methyl)-8-(3-(((E)-1 H-inden-1-ylidene)methyl)phenoxy)-2,3,6,7-tetrahydro-1 H,5 H-pyrido[3,2,1ij]quinolone) was successfully designed and synthesized to detect amino acid lysine (Lys). The selective sensing behavior of the probe ITQ was observed using absorption and emission spectral results. Further, the probe ITQ exhibits a strong binding affinity for Lys [1.4 × 104 M- 1] and detects and quantifies Lys even in its nanomolar concentration. Moreover, the probe ITQ detects Lys at 1:2 binding stoichiometry with suitable biological pH [4-11]. Furthermore, the probe ITQ was also successfully utilized to detect Lys in tablets, real samples (avocado, soyabean and pork) and in live HeLa cells.

7.
J Fluoresc ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642776

RESUMO

A novel fluorescence chemosensor BDP (2-(1-(benzothiazol-2-yl)-5-(4-(diphenylamino)phenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol) has been synthesized and its sensing behavior has been screened towards various cations by absorption, emission and mass spectroscopic techniques. The probe BDP detects Cu2+ ions preferentially over other metal ions, and the resulting BDP-Cu2+ ensemble acts as a secondary sensor for cyanide anion detection over other anions. The fluorescence intensity of the probe BDP is quenched when it comes into contact with Cu2+ ions, but it is increased reversibly when it comes into contact with cyanide anion, according to spectroscopic measurements. Along with this, optical studies indicate that the sensor BDP has capability to sense Cu2+ and CN- ions selectively over other examined competitive ions with the LOD of 2.57×10-8 M and 2.98×10-8 M respectively. The detection limit of Cu2+ ions is lower than the WHO recommended Cu2+ ions concentration (31.5 µM) in drinking water. On the basis of "on-off-on" fluorescence change of the probe BDP upon interaction with Cu2+ and CN- ions, a possible mechanism for this selective sensing behavior was presented and IMPLICATION logic gate was successfully designed. Furthermore, cell imaging investigations were used to investigate the probe BDP's biological applicability.

8.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569273

RESUMO

Cisplatin-based chemotherapy is a common regimen for bladder cancer, a life-threatening cancer with more than 500,000 new cases worldwide annually. Like many other metallodrugs, cisplatin causes severe side effects for its general toxicity. Organoruthenium is known for its structural stability, good anticancer activity, and possible low general toxicity. Here, we have prepared and characterized a series of water-soluble ruthenium-arene complexes with N,N'-chelating ligands: [Ru(II)-η6-arene-(4,4'-(X)2-2,2'-bipyridine)Cl]Cl (arene = p-cymene, X = C4H9 (1), COOH (2), COOCH3 (3), COOC2H5 (4); arene = benzene, X = C4H9 (5), COOCH3 (6), COOC2H5 (7)). These complexes are carefully characterized using single-crystal X-ray diffraction, UV-vis, IR, 1H NMR, and MALDI-TOF MS spectroscopy. Their DFT-calculated structural and thermodynamic properties are consistent with the experimental observations. Biophysicochemical studies of complex interaction with CTDNA and BSA supported by molecular docking simulations reveal suitable properties of 1-7 as anticancer agents. Cytotoxicities of 1-7 are evaluated on healthy human MCF-10a-breast epithelial and African green monkey Vero cells, and carcinoma human HepG-2-hepatic, T24-bladder, and EAhy-926-endothelial cells. All complexes exhibit much higher cytotoxicity for T24 than cisplatin. Particularly, 1 and 2 are also highly selective toward T24. Fluorescence imaging and flow cytometry demonstrate that 1 and 2 penetrate T24 cell membrane and induce early apoptosis at their respective IC50 concentrations, which ultimately lead to cell death. Statistical analysis suggests that the order of importance for T24 cell antiproliferation is protein binding, Log p, Ru-Cl bond length, while DNA binding is the least important. This study is the first to report the anti-bladder cancer efficacy of Ru-arene-2,2'-bipyridine complexes, and may provide insights for rational design of organoruthenium drugs in the enduring search for new chemotherapeutic agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Neoplasias da Bexiga Urinária , Animais , Humanos , Chlorocebus aethiops , Cisplatino/farmacologia , 2,2'-Dipiridil , Complexos de Coordenação/química , Simulação de Acoplamento Molecular , Ligantes , Células Vero , Células Endoteliais/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Bexiga Urinária/tratamento farmacológico , Rutênio/química , Linhagem Celular Tumoral
9.
J Mol Struct ; 1250: 131782, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34697505

RESUMO

Two heterocyclic azole compounds, 3-(2,3-dihydrobenzo[d]thiazol-2-yl)-4H-chromen-4-one (SVS1) and 5-(1H-indol-3-yl)-4-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (SVS2) were obtained unexpectedly from 2-aminothiophenol and 4-oxo-4H-chromene-3-carbaldehyde (for SVS1), and (E)-2-((1H-indol-3-yl)methylene)-N-methylhydrazine-1-carbothioamide in the presence of anhydrous FeCl3 (for SVS2), respectively. The compounds were well characterized by analytical and spectroscopic tools. The molecular structures of both the compounds were determined by single crystal X-ray diffraction (XRD) study. The results obtained from density functional theory (DFT) study revealed the molecular geometry and electron distribution of the compounds, which were correlated well with the three-dimensional structures obtained from the single crystal XRD. DMol3 was used to calculate quantum chemical parameters [chemical potential (µ), global hardness (η), global softness (σ), absolute electronegativity (χ) and electrophilicity index (ω)] of SVS1 and SVS2. Molecular docking study was performed to elucidate the binding ability of SVS1 and SVS2 with SARS-CoV-2 main protease and human angiotensin-converting enzyme-2 (ACE-2) molecular targets. Interestingly, the binding efficiency of the compounds with the molecular targets was comparable with that of remdesivir (SARS-CoV-2), chloroquine and hydroxychloroquine. SVS1 showed better docking energy than SVS2. The molecular docking study was complemented by molecular dynamics simulation study of SARS-CoV-2 main protease-SVS1 complex, which further exemplified the binding ability of SVS1 with the target. In addition, SVS1, SVS2 and cisplatin were assessed for their cytotoxicity against a panel of three human cancer cells such as HepG-2 (hepatic carcinoma), T24 (bladder) and EA.hy926 (endothelial), as well as Vero (kidney epithelial cells extracted from an African green monkey) normal cells using MTT assay. The results showed that SVS2 has significant cytotoxicity against HepG-2 and EA.hy926 cells with the IC50 values of 33.8 µM (IC50 = 49.9 µM-cisplatin and 8.6 µM-doxorubicin) and 29.2 (IC50 = 26.6 µM-cisplatin and 3.8 µM-doxorubicin), respectively.

10.
Chemistry ; 27(26): 7418-7433, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404126

RESUMO

Fourteen new RuII -arene (p-cymene/benzene) complexes (C1-C14) have been synthesized by varying the N-terminal substituent in the furoylthiourea ligand and satisfactorily characterized by using analytical and spectroscopic techniques. Electrostatic potential maps predicted that the electronic effect of the substituents was mostly localized, with some influence seen on the labile chloride ligands. The structure-activity relationships of the Ru-p-cymene and Ru-benzene complexes showed opposite trends. All the complexes were found to be highly toxic towards IMR-32 cancer cells, with C5 (Ru-p-cymene complex containing C6 H2 (CH3 )3 as N-terminal substituent) and C13 (Ru-benzene complex containing C6 H4 (CF3 ) as N-terminal substituent) showing the highest activity among each set of complexes, and hence they were chosen for further study. These complexes showed different behavior in aqueous solutions, and were also found to catalytically oxidize glutathione. They also promoted cell death by apoptosis and cell cycle arrest. Furthermore, the complexes showed good binding ability with the receptors Pim-1 kinase and vascular endothelial growth factor receptor 2, commonly overexpressed in cancer cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/toxicidade , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular
11.
Eur Biophys J ; 50(8): 1069-1081, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34455461

RESUMO

The sensitivity of protein molecular structures makes them susceptible to aggregation in conditions unfavorable for the maintenance of their native folds. The aggregation of proteins leads to many disorders, but the inhibition of amyloid fibril formation using metal-containing small molecules is gaining popularity. Herein we report the effect of nickel(II) complexes (N1, N2, N3, and N4) bearing thiosemicarbazones on the inhibition of amyloid fibril formation by insulin. The interactions of the complexes with amyloid fibrils were investigated using various biophysical techniques, including light scattering, intrinsic fluorescence assay, thioflavin T (ThT) assay, and Fourier transform-infrared spectroscopy. The results revealed that the phenyl-substituted N3 was an efficient inhibitor of amyloid fibril formation and maintained the insulin in its native structure despite conditions promoting fibrillation. Nickel(II) complexes containing indole based thiosemicarbazones were efficient in inhibiting the amyloid fibril formation and maintaining the insulin in its native structure in unfavorable conditions.


Assuntos
Amiloide , Tiossemicarbazonas , Fluorescência , Insulina , Níquel , Tiossemicarbazonas/farmacologia
12.
Inorg Chem Commun ; 134: 109029, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729032

RESUMO

A water-soluble binuclear organometallic Ru-p-cymene complex [Ru(η6-p-cymene)(η2-L)]2 (1) was prepared from (E)-2-((1H-indol-3-yl)methylene)-N-phenylhydrazine-1-carbothioamide (HL) and [RuCl2(p-cymene)]2 in methanol at room temperature under inert atmosphere. The structure of binuclear complex was analyzed by UV-Visible, FT-IR, NMR and mass spectroscopic methods. The solid-state structure of the complex was ascertained by single crystal X-ray diffraction technique. The complex exhibited pseudo-octahedral (piano-stool) geometry around Ru(II) ion. The cytotoxic property of the ligand and complex along with cisplatin was investigated against A549-lung, MCF-7-breast, HeLa-cervical, HepG-2-liver, T24-urinary bladder and EA.hy926-endothelial cancer cells, and Vero-kidney epithelial normal cells. The complex exhibited superior activity than cisplatin against A549, HeLa and T24 cancer cells with the IC50 values of 7.70, 11.2, and 5.05 µM, respectively. The complexes were cytotoxic specifically to the cancer cells. Molecular docking studies showed good binding potential of the ligand and complex with the spike protein and main protease of SARS-CoV-2, indicating the promising role of these compounds as antiviral compounds.

13.
Molecules ; 26(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34834120

RESUMO

In our previous paper, we reported that amphiphilic Ir complex-peptide hybrids (IPHs) containing basic peptides such as KK(K)GG (K: lysine, G: glycine) (e.g., ASb-2) exhibited potent anticancer activity against Jurkat cells, with the dead cells showing a strong green emission. Our initial mechanistic studies of this cell death suggest that IPHs would bind to the calcium (Ca2+)-calmodulin (CaM) complex and induce an overload of intracellular Ca2+, resulting in the induction of non-apoptotic programmed cell death. In this work, we conduct a detailed mechanistic study of cell death induced by ASb-2, a typical example of IPHs, and describe how ASb-2 induces paraptotic programmed cell death in a manner similar to that of celastrol, a naturally occurring triterpenoid that is known to function as a paraptosis inducer in cancer cells. It is suggested that ASb-2 (50 µM) induces ER stress and decreases the mitochondrial membrane potential (ΔΨm), thus triggering intracellular signaling pathways and resulting in cytoplasmic vacuolization in Jurkat cells (which is a typical phenomenon of paraptosis), while the change in ΔΨm values is negligibly induced by celastrol and curcumin. Other experimental data imply that both ASb-2 and celastrol induce paraptotic cell death in Jurkat cells, but this induction occurs via different signaling pathways.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Irídio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Calmodulina/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/farmacologia , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Células Jurkat , Células K562 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Triterpenos Pentacíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Células U937
14.
Inorg Chem ; 59(23): 17109-17122, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33231439

RESUMO

Metal complexes have numerous applications in the current era, particularly in the field of pharmaceutical chemistry and catalysis. A novel synthetic approach for the same is always a beneficial addition to the literature. Henceforth, for the first time, we report the formation of three new Pd(II) complexes through the Michael addition pathway. Three chromone-based thiosemicarbazone ligands (SVSL1-SVSL3) and Pd(II) complexes (1-3) were synthesized and characterized by analytical and spectroscopic tools. The Michael addition pathway for the formation of complexes was confirmed by spectroscopic studies. Distorted square planar structure of complex 2 was confirmed by single-crystal X-ray diffraction. Complexes 1-3 were subjected to DNA- and BSA-binding studies. The complex with cyclohexyl substituent on the terminal N of thiosemicarbazone (3) showed the highest binding efficacy toward these biomolecules, which was further understood through molecular docking studies. The anticancer potential of these complexes was studied preliminarily by using MTT assay in cancer and normal cell lines along with the benchmark drugs (cisplatin, carboplatin, and gemcitabine). It was found that complex 3 was highly toxic toward MDA-MB-231 and AsPC-1 cancer cells with IC50 values of 0.5 and 0.9 µM, respectively, and was more efficient than the standard drugs. The programmed cell death mechanism of the complexes in MDA-MB-231 cancer cells was confirmed. Furthermore, the complexes induced apoptosis via ROS-mediated mitochondrial signaling pathway. Conveniently, all the complexes showed less toxicity (≥50 µM) against MCF-10a normal cell line. Molecular docking studies were performed with VEGFR2, EGFR, and SARS-CoV-2 main protease to illustrate the binding efficiency of the complexes with these receptors. To our surprise, binding potential of the complexes with SARS-CoV-2 main protease was higher than that with chloroquine and hydroxychloroquine.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2/enzimologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Cromonas/síntese química , Cromonas/metabolismo , Cromonas/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Proteases 3C de Coronavírus/metabolismo , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Paládio/química , Ligação Proteica , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/metabolismo , Tiossemicarbazonas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
J Biol Inorg Chem ; 22(4): 461-480, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27995332

RESUMO

A series of new Ni(II) complexes containing indole-based thiosemicarbazone ligands was synthesized and characterized by elemental analyses, and UV-visible, FT-IR, 1H & 13C NMR and mass spectroscopic techniques. The Ni(II) complexes (1-4) bear the general formula [Ni{C10H9N2NHCSNH(R)}2] where R = hydrogen (1), 4-methyl (2), 4-phenyl (3) and 4-cyclohexyl (4). Molecular structure of ligands (L3 and L4) and complexes (2, 3 and 4) was confirmed by single crystal X-ray crystallography. Four coordinated Ni(II) complexes showed square planar geometry. The interaction of the Ni(II) complexes with calf thymus DNA (CT-DNA) has been evaluated by absorption spectroscopic and ethidium bromide (EB) competitive binding studies, which revealed the intercalative interaction of the complexes with CT-DNA. Gel electrophoresis experiments showed the cleavage of DNA by the complexes without any external agent. Further, the interaction of the complexes with bovine serum albumin (BSA) was investigated using UV-visible, fluorescence and synchronous fluorescence spectroscopic methods, which showed that the complexes could bind strongly with BSA. Molecular docking was employed to understand the binding of the Ni(II) complexes with the molecular target B-DNA, human DNA topoisomerase I and BSA. All the Ni(II) complexes possess high antioxidant activity against 2-2-diphenyl-1-picrylhydrazyl (DPPH) radical and antihaemolytic activity. In addition, in vitro cytotoxicity of the Ni(II) complexes against lung cancer (A549), human breast cancer (MCF7) and mouse embryonic fibroblasts (L929) cell lines was investigated. Complex 4 has high cytotoxicity. The mode of cell death effected by complex 4 has been explored using Hoechst 33258 staining. Nickel(II) complexes of thiosemicarbazone ligands were synthesized and their DNA/protein binding, DNA cleavage and cytotoxicity abilities were studied.


Assuntos
Antioxidantes/farmacologia , Indóis/farmacologia , Níquel/farmacologia , Compostos Organometálicos/farmacologia , Tiossemicarbazonas/farmacologia , Animais , Antioxidantes/síntese química , Antioxidantes/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Humanos , Indóis/química , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Níquel/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química
16.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 9): o1039-40, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25309214

RESUMO

In the title compound, C17H20ClN3OS, the mean plane of the central thio-urea core makes dihedral angles of 26.56 (9) and 47.62 (12)° with the mean planes of the chromene moiety and the cyclo-hexyl ring, respectively. The cyclo-hexyl ring adopts a chair conformation. The N-H atoms of the thio-urea unit adopt an anti conformation. The chromene group is positioned trans, whereas the cyclo-hexyl ring lies in the cis position to the thione S atom, with respect to the thio-urea C-N bond. In the crystal, mol-ecules are linked by N-H⋯S hydrogen bonds, forming inversion dimers enclosing R (2) 2(8) ring motifs. The dimers are linked by C-H⋯Cl hydrogen bonds, enclosing R (6) 6(44) ring motifs, forming sheets lying parallel to (010).

17.
ChemMedChem ; : e202400435, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374112

RESUMO

The evolution of chemotherapy, especially the dawn of metal-based drugs, represents a transformative era in cancer treatment. From the serendipitous discovery of mustard gas's cytotoxic effects to the sophisticated development of targeted therapies, chemotherapy has significantly refined. Central to this progression is the incorporation of metal-based compounds, such as platinum (Pt), ruthenium (Ru), and gold (Au), which offer unique mechanisms of action, distinguishing them from organic therapeutics. Among these, Ru complexes, exemplified by BOLD-100 and TLD1433, have shown exceptional promise due to their selective activity, lower propensity for resistance, and the ability to target spescific cellular pathways. This paper explores the journey of such Ru candidates, focusing on the mechanisms, efficacy, and clinical potential of these Ru-based drugs, which stand at the forefront of current research, aiming to provide more targeted, less toxic, and highly effective cancer treatments.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124824, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029203

RESUMO

In this study, we have reported a novel 4-bromo-salicylaldehyde-diphenyl-azine (B-1), a new member of salicylaldehyde-diphenyl-azine (SDPA) family known for its excellent sensing properties. In contrast to the previously reported AIEgens, we found that the bromo-substitution at the 4th position of the salicylaldehyde moiety blue-shifted the emission by 10 and 15 nm as compared to the unsubstituted (Tong et.al 2017) and Bromo at the 5th position (Jain et.al 2023) respectively. Moreover, B-1 crystallizes instantly as the cooling process starts, which was not observed in the previously reported scaffolds. The sensing investigation again demonstrated the precise and ultrasensitive behavior of B-1 for copper ions. B-1 has a very low LOD value i.e. 29.2 x 10-8 M with a high association constant and binds with copper ion in 2:1 mode. This time we also analyzed the practical applicability in the solid phase using cotton swabs and performed the real-time estimation of copper ions in water and biological samples like urine and blood serum. The excellent percentage recovery and the RSD value suggest the precision of the experiments. Further, we also perform the sensing in living cancer HeLa cells. Altogether, we found that the SDPA skeleton is precise and ultrasensitive for copper ions and versatile which can be used variously to detect copper ions in the real world. This research will surely help in developing new specific skeleton-based AIEgens with desirable emission properties and precise applications in the future.


Assuntos
Aldeídos , Cobre , Cobre/química , Aldeídos/química , Humanos , Espectrometria de Fluorescência , Células HeLa , Limite de Detecção , Íons
19.
J Mater Chem B ; 12(37): 9408-9419, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39192836

RESUMO

A covalently bonded hexanuclear neutral complex, [Mn6(µ3-O)2(3-MeO-salox)6(OAc)2(H2O)4] (1), has been synthesized and characterized by single crystal X-ray diffraction analysis along with IR and HRMS studies. Complex 1 has been found to selectively interact with human serum albumin (HSA), a model transport protein. The interaction of 1 with HSA was investigated by monitoring the change in the absorbance value of HSA at λ = 280 nm with increasing concentration of 1. Likewise, fluorescence titrations were carried out under two conditions: (i) titration of a 5 µM solution of complex 1 with the gradual addition of HSA, showing a ∼9-fold fluorescence intensity enhancement at 424 nm, upon excitation at 300 nm; and (ii) upon excitation at 295 nm, titration of 5 µM HSA solution with the incremental addition of complex 1, showing a quenching of fluorescence intensity at 334 nm, with simultaneous development of a new emission band at 424 nm. A linear form of the Stern-Volmer equation gives KSV = 9.77 × 104 M-1 and the Benesi-Hildebrand plot yields the binding constant as KBH = 1.98 × 105 M-1 at 298 K. The thermodynamic parameters, ΔS°, ΔH°, and ΔG°, were estimated by using the van't Hoff relationship which infer the major contribution of hydrophobic interactions between HSA and 1. It was observed that quenching of HSA emission arises mainly through a dynamic quenching mechanism as indicated by the dependence of average lifetime 〈τ〉 on the concentration of 1. The changes in the CD (circular dichroism) spectral pattern of HSA in the presence of 1 clearly establish the variation of HSA secondary structure on interaction with 1. The most probable interaction region in HSA for 1 was determined from molecular docking studies which establish the preferential trapping of 1 in the subdomain IIA of site I in HSA and substantiated by the results of site-specific marker studies. Complex 1 was further evaluated for its antiproliferative effects in lung cancer A549 cells, which strictly inhibits the growth of the cells in both 2D and 3D mammospheres, indicating its potential application as an anticancer drug.


Assuntos
Complexos de Coordenação , Manganês , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Manganês/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Proliferação de Células/efeitos dos fármacos
20.
ACS Appl Bio Mater ; 7(8): 5622-5639, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39087675

RESUMO

Our study focuses on synthesizing and exploring the potential of three N-(4) substituted thiosemicarbazones derived from cinnamic aldehyde, alongside their Ru(II)-(η6 -p-cymene)/(η6-benzene) complexes. The synthesized compounds were comprehensively characterized using a range of analytical techniques, including FT-IR, UV-visible spectroscopy, NMR (1H, 13C), and HRMS. We investigated their electronic and physicochemical properties via density functional theory (DFT). X-ray crystal structures validated structural differences identified by DFT. Molecular docking predicted promising bioactivities, supported by experimental observations. Notably, docking with EGFR suggested an inhibitory potential against this cancer-related protein. Spectroscopic titrations revealed significant DNA/BSA binding affinities, particularly with DNA intercalation and BSA hydrophobic interactions. RuPCAM displayed the strongest binding affinity with DNA (Kb = 6.23 × 107 M-1) and BSA (Kb = 9.75 × 105 M-1). Assessed the cytotoxicity of the complexes on cervical cancer cells (HeLa), and breast cancer cells (MCF-7 and MDA-MB 231), revealing remarkable potency. Additionally, selectivity was assessed by examining MCF-10a normal cell lines. The active complexes were found to trigger apoptosis, a vital cellular process crucial for evaluating their potential as anticancer agents utilizing staining assays and flow cytometry analysis. Intriguingly, complexation with Ru(II)-arene precursors significantly amplified the bioactivity of thiosemicarbazones, unveiling promising avenues toward the creation of powerful anticancer agents.


Assuntos
Acroleína , Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Rutênio , Tiossemicarbazonas , Humanos , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rutênio/química , Rutênio/farmacologia , Ligantes , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Estrutura Molecular , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , DNA/química , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Tamanho da Partícula , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA