Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559985

RESUMO

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Assuntos
Interações Hospedeiro-Patógeno , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Internalização do Vírus , Animais , Especificidade de Anticorpos/imunologia , Sequência de Bases , Encéfalo/patologia , Encéfalo/virologia , Sistemas CRISPR-Cas/genética , Membrana Celular/metabolismo , Células Cultivadas , Glicoproteínas/metabolismo , Glicosaminoglicanos/metabolismo , Glicosilação , Humanos , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Glicoproteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Desnaturação Proteica , Febre do Vale de Rift/patologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/imunologia
2.
PLoS Pathog ; 20(6): e1012343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935789

RESUMO

Rift Valley fever virus (RVFV) is an encephalitic bunyavirus that can infect neurons in the brain. There are no approved therapeutics that can protect from RVFV encephalitis. Innate immunity, the first line of defense against infection, canonically antagonizes viruses through interferon signaling. We found that interferons did not efficiently protect primary cortical neurons from RVFV, unlike other cell types. To identify alternative neuronal antiviral pathways, we screened innate immune ligands and discovered that the TLR2 ligand Pam3CSK4 inhibited RVFV infection, and other bunyaviruses. Mechanistically, we found that Pam3CSK4 blocks viral fusion, independent of TLR2. In a mouse model of RVFV encephalitis, Pam3CSK4 treatment protected animals from infection and mortality. Overall, Pam3CSK4 is a bunyavirus fusion inhibitor active in primary neurons and the brain, representing a new approach toward the development of treatments for encephalitic bunyavirus infections.


Assuntos
Lipopeptídeos , Neurônios , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Camundongos , Lipopeptídeos/farmacologia , Febre do Vale de Rift/virologia , Febre do Vale de Rift/prevenção & controle , Neurônios/metabolismo , Neurônios/virologia , Camundongos Endogâmicos C57BL , Humanos , Imunidade Inata/efeitos dos fármacos , Encefalite Viral/virologia , Encefalite Viral/imunologia , Encefalite Viral/prevenção & controle , Encefalite Viral/tratamento farmacológico , Antivirais/farmacologia
3.
Nature ; 586(7830): 509-515, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32967005

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Furões/virologia , Humanos , Mesocricetus/virologia , Camundongos , Pneumonia Viral/imunologia , Primatas/virologia , SARS-CoV-2 , Vacinas Virais/imunologia
4.
J Virol ; 98(8): e0098324, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39016561

RESUMO

Rift Valley fever virus (RVFV) infection causes abortions in ruminant livestock and is associated with an increased likelihood of miscarriages in women. Using sheep and human placenta explant cultures, we sought to identify tissues at the maternal-fetal interface targeted by RVFV. Sheep villi and fetal membranes were highly permissive to RVFV infection resulting in markedly higher virus titers than human cultures. Sheep cultures were most permissive to wild-type RVFV and ΔNSm infection, while live-attenuated RVFV vaccines (LAVs; MP-12, ΔNSs, and ΔNSs/ΔNSm) exhibited reduced replication. The human fetal membrane restricted wild-type and LAV replication, and when infection occurred, it was prominent on the maternal-facing side. Type I and type III interferons were induced in human villi exposed to LAVs lacking the NSs protein. This study supports the use of sheep and human placenta explants to understand vertical transmission of RVFV in mammals and whether LAVs are attenuated at the maternal-fetal interface.IMPORTANCEA direct comparison of replication of Rift Valley fever virus (RVFV) in sheep and human placental explants reveals comparative efficiencies and permissivity to infection and replication. Vaccine strains of RVFV demonstrated reduced infection and replication capacity in the mammalian placenta. This study represents the first direct cross-host comparison of the vertical transmission capacity of this high-priority emerging mosquito-transmitted virus.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Placenta , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Atenuadas , Vacinas Virais , Replicação Viral , Vírus da Febre do Vale do Rift/fisiologia , Vírus da Febre do Vale do Rift/imunologia , Animais , Feminino , Gravidez , Ovinos , Placenta/virologia , Humanos , Febre do Vale de Rift/virologia , Febre do Vale de Rift/transmissão , Vacinas Virais/imunologia , Doenças dos Ovinos/virologia
5.
J Virol ; 98(5): e0176223, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38563762

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vírus do Sarampo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Chlorocebus aethiops , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Vírus do Sarampo/imunologia , Vírus do Sarampo/genética , Vacinas contra COVID-19/imunologia , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vetores Genéticos , Células Vero , Pandemias/prevenção & controle , Feminino , Betacoronavirus/imunologia , Betacoronavirus/genética , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , Pneumonia Viral/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Modelos Animais de Doenças
6.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
7.
Proc Natl Acad Sci U S A ; 119(33): e2204706119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939689

RESUMO

Oropouche orthobunyavirus (OROV; Peribunyaviridae) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein-related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.


Assuntos
Infecções por Bunyaviridae , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Orthobunyavirus , Internalização do Vírus , Animais , Infecções por Bunyaviridae/metabolismo , Infecções por Bunyaviridae/virologia , Técnicas de Inativação de Genes , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Orthobunyavirus/fisiologia , América do Sul
8.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38546100

RESUMO

Rift Valley fever virus (RVFV) is an emerging arboviral disease with pandemic potential. While infection is often self-limiting, a subset of individuals may develop late-onset encephalitis, accounting for up to 20 % of severe cases. Importantly, individuals displaying neurologic disease have up to a 53 % case fatality rate, yet the neuropathogenesis of RVFV infection remains understudied. In this study, we evaluated whether ex vivo postnatal rat brain slice cultures (BSCs) could be used to evaluate RVFV infection in the central nervous system. BSCs mounted an inflammatory response after slicing, which resolved over time, and they were viable in culture for at least 12 days. Infection of rat BSCs with pathogenic RVFV strain ZH501 induced tissue damage and apoptosis over 48 h. Viral replication in BSCs reached up to 1×107 p.f.u. equivalents/ml, depending on inoculation dose. Confocal immunofluorescent microscopy of cleared slices confirmed direct infection of neurons as well as activation of microglia and astrocytes. Further, RVFV-infected rat BSCs produced antiviral cytokines and chemokines, including MCP-1 and GRO/KC. This study demonstrates that rat BSCs support replication of RVFV for ex vivo studies of neuropathogenesis. This allows for continued and complementary investigation into RVFV infection in an ex vivo postnatal brain slice culture format.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Ratos , Animais , Vírus da Febre do Vale do Rift/fisiologia , Citocinas , Encéfalo , Morte Celular
9.
PLoS Pathog ; 18(6): e1009946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696423

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a positively-stranded RNA arbovirus of the genus Alphavirus that causes encephalitis in humans. Cynomolgus macaques are a relevant model of the human disease caused by VEEV and are useful in exploring pathogenic mechanisms and the host response to VEEV infection. Macaques were exposed to small-particle aerosols containing virus derived from an infectious clone of VEEV strain INH-9813, a subtype IC strain isolated from a human infection. VEEV-exposed macaques developed a biphasic fever after infection similar to that seen in humans. Maximum temperature deviation correlated with the inhaled dose, but fever duration did not. Neurological signs, suggestive of virus penetration into the central nervous system (CNS), were predominantly seen in the second febrile period. Electroencephalography data indicated a statistically significant decrease in all power bands and circadian index during the second febrile period that returned to normal after fever resolved. Intracranial pressure increased late in the second febrile period. On day 6 post-infection macaques had high levels of MCP-1 and IP-10 chemokines in the CNS, as well as a marked increase of T lymphocytes and activated microglia. More than four weeks after infection, VEEV genomic RNA was found in the brain, cerebrospinal fluid and cervical lymph nodes. Pro-inflammatory cytokines & chemokines, infiltrating leukocytes and pathological changes were seen in the CNS tissues of macaques euthanized at these times. These data are consistent with persistence of virus replication and/or genomic RNA and potentially, inflammatory sequelae in the central nervous system after resolution of acute VEEV disease.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Animais , Sistema Nervoso Central , Vírus da Encefalite Equina Venezuelana/genética , Cavalos/genética , Inflamação , Macaca fascicularis , RNA Viral/genética
10.
J Infect Dis ; 228(Suppl 6): S376-S389, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849397

RESUMO

Research directed at select prototype pathogens is part of the approach put forth by the National Institute of Allergy and Infectious Disease (NIAID) to prepare for future pandemics caused by emerging viruses. We were tasked with identifying suitable prototypes for four virus families of the Bunyavirales order (Phenuiviridae, Peribunyaviridae, Nairoviridae, and Hantaviridae). This is a challenge due to the breadth and diversity of these viral groups. While there are many differences among the Bunyavirales, they generally have complex ecological life cycles, segmented genomes, and cause a range of human clinical outcomes from mild to severe and even death. Here, we delineate potential prototype species that encompass the breadth of clinical outcomes of a given family, have existing reverse genetics tools or animal disease models, and can be amenable to a platform approach to vaccine testing. Suggested prototype pathogens outlined here can serve as a starting point for further discussions.


Assuntos
Vírus de RNA , Animais , Humanos
11.
J Virol ; 96(20): e0111222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36194021

RESUMO

People infected with the mosquito-borne Rift Valley fever virus (RVFV) can suffer from eye-related problems resulting in ongoing vision issues or even permanent blindness. Despite ocular disease being the most frequently reported severe outcome, it is vastly understudied compared to other disease outcomes caused by RVFV. Ocular manifestations of RVFV include blurred vision, uveitis, and retinitis. When an infected individual develops macular or paramacular lesions, there is a 50% chance of permanent vision loss in one or both eyes. The cause of blinding ocular pathology remains unknown in part due to the lack of a tractable animal model. Using 3 relevant exposure routes, both subcutaneous (SC) and aerosol inoculation of Sprague Dawley rats led to RVFV infection of the eye. Surprisingly, direct inoculation of the conjunctiva did not result in successful ocular infection. The posterior segment of the eye, including the optic nerve, choroid, ciliary body, and retina, were all positive for RVFV antigen in SC-infected rats, and live virus was isolated from the eyes. Proinflammatory cytokines and increased leukocyte counts were also found in the eyes of infected rats. Additionally, human ocular cell lines were permissive for Lrp1-dependent RVFV infection. This study experimentally defines viral tropism of RVFV in the posterior segment of the rat eye and characterizes virally-mediated ocular inflammation, providing a foundation for evaluation of vaccines and therapeutics to protect against adverse ocular outcomes. IMPORTANCE Rift Valley fever virus (RVFV) infection leads to eye damage in humans in up to 10% of reported cases. Permanent blindness occurs in 50% of individuals with significant retinal scarring. Despite the prevalence and severity of this outcome, very little is known about the mechanisms of pathogenesis. We addressed this gap by developing a rodent model of ocular disease. Subcutaneous infection of Sprague Dawley rats resulted in infection of the uvea, retina, and optic nerve along with the induction of inflammation within the posterior eye. Infection of human ocular cells induced inflammatory responses and required host entry factors for RVFV infection similar to rodents. This work provides evidence of how RVFV infects the eye, and this information can be applied to help mitigate the devastating outcomes of RVF ocular disease through vaccines or treatments.


Assuntos
Oftalmopatias , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Ratos , Humanos , Animais , Vírus da Febre do Vale do Rift/fisiologia , Ratos Sprague-Dawley , Inflamação , Citocinas , Aerossóis , Cegueira
12.
PLoS Pathog ; 17(2): e1009308, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534855

RESUMO

Aerosol exposure to eastern equine encephalitis virus (EEEV) can trigger a lethal viral encephalitis in cynomolgus macaques which resembles severe human disease. Biomarkers indicative of central nervous system (CNS) infection by the virus and lethal outcome of disease would be useful in evaluating potential medical countermeasures, especially for therapeutic compounds. To meet requirements of the Animal Rule, a better understanding of the pathophysiology of EEEV-mediated disease in cynomolgus macaques is needed. In this study, macaques given a lethal dose of clone-derived EEEV strain V105 developed a fever between 2-3 days post infection (dpi) and succumbed to the disease by 6 dpi. At the peak of the febrile phase, there was a significant increase in the delta electroencephalography (EEG) power band associated with deep sleep as well as a sharp rise in intracranial pressure (ICP). Viremia peaked early after infection and was largely absent by the onset of fever. Granulocytosis and elevated plasma levels of IP-10 were found early after infection. At necropsy, there was a one hundred- to one thousand-fold increase in expression of traumatic brain injury genes (LIF, MMP-9) as well as inflammatory cytokines and chemokines (IFN-γ, IP-10, MCP-1, IL-8, IL-6) in the brain tissues. Phenotypic analysis of leukocytes entering the brain identified cells as primarily lymphoid (T, B, NK cells) with lower levels of infiltrating macrophages and activated microglia. Massive amounts of infectious virus were found in the brains of lethally-infected macaques. While no infectious virus was found in surviving macaques, quantitative PCR did find evidence of viral genomes in the brains of several survivors. These data are consistent with an overwhelming viral infection in the CNS coupled with a tremendous inflammatory response to the infection that may contribute to the disease outcome. Physiological monitoring of EEG and ICP represent novel methods for assessing efficacy of vaccines or therapeutics in the cynomolgus macaque model of EEEV encephalitis.


Assuntos
Aerossóis/efeitos adversos , Biomarcadores/análise , Encéfalo/imunologia , Encéfalo/patologia , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalite Viral/imunologia , Febre/imunologia , Animais , Encéfalo/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite Viral/patologia , Encefalite Viral/virologia , Feminino , Febre/patologia , Febre/virologia , Macaca fascicularis , Masculino
13.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33597209

RESUMO

The potential for emerging mosquito-borne viruses to cause fetal infection in pregnant women was overlooked until the Zika fever outbreak several years ago. Rift Valley fever virus (RVFV) is an emerging arbovirus with a long history of fetal infection and death in pregnant livestock. The effect of RVFV infection on pregnant women is not well understood. This Gem examines the effects that this important emerging pathogen has during pregnancy, its potential impact on pregnant women, and the current research efforts designed to understand and mitigate adverse effects of RVFV infection during pregnancy.


Assuntos
Surtos de Doenças , Complicações Infecciosas na Gravidez , Febre do Vale de Rift , Vírus da Febre do Vale do Rift/patogenicidade , Animais , Animais Domésticos/virologia , Feminino , Humanos , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Complicações Infecciosas na Gravidez/virologia , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/virologia , Zoonoses Virais/epidemiologia
14.
PLoS Pathog ; 16(9): e1008903, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946524

RESUMO

Vaccines are urgently needed to combat the global coronavirus disease 2019 (COVID-19) pandemic, and testing of candidate vaccines in an appropriate non-human primate (NHP) model is a critical step in the process. Infection of African green monkeys (AGM) with a low passage human isolate of SARS-CoV-2 by aerosol or mucosal exposure resulted in mild clinical infection with a transient decrease in lung tidal volume. Imaging with human clinical-grade 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) co-registered with computed tomography (CT) revealed pulmonary lesions at 4 days post-infection (dpi) that resolved over time. Infectious virus was shed from both respiratory and gastrointestinal (GI) tracts in all animals in a biphasic manner, first between 2-7 dpi followed by a recrudescence at 14-21 dpi. Viral RNA (vRNA) was found throughout both respiratory and gastrointestinal systems at necropsy with higher levels of vRNA found within the GI tract tissues. All animals seroconverted simultaneously for IgM and IgG, which has also been documented in human COVID-19 cases. Young AGM represent an species to study mild/subclinical COVID-19 disease and with possible insights into live virus shedding. Future vaccine evaluation can be performed in AGM with correlates of efficacy being lung lesions by PET/CT, virus shedding, and tissue viral load.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico por imagem , Trato Gastrointestinal/virologia , Pneumonia Viral/diagnóstico por imagem , Eliminação de Partículas Virais/fisiologia , Animais , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Pulmão/patologia , Pulmão/virologia , Pandemias , Pneumonia Viral/virologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , SARS-CoV-2
15.
J Gen Virol ; 102(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33231535

RESUMO

The zoonotic emerging Rift Valley fever virus (RVFV) causes sporadic disease in livestock and humans throughout Africa and the Saudi Arabian peninsula. Infection of people with RVFV can occur through mosquito bite or mucosal exposure during butchering or milking of infected livestock. Disease typically presents as a self-limiting fever; however, in rare cases, hepatitis, encephalitis and ocular disease may occur. Recent studies have illuminated the neuropathogenic mechanisms of RVFV in a rat aerosol infection model. Neurological disease in rats is characterized by breakdown of the blood-brain barrier late in infection, infiltration of leukocytes to the central nervous system (CNS) and massive viral replication in the brain. However, the route of RVFV entry into the CNS after inhalational exposure remains unknown. Here, we visualized the entire nasal olfactory route from snout to brain after RVFV infection using RNA in situ hybridization and immunofluorescence microscopy. We found widespread RVFV-infected cells within the olfactory epithelium, across the cribriform plate, and in the glomerular region of the olfactory bulb within 2 days of infection. These results indicate that the olfactory tract is a major route of infection of the brain after inhalational exposure. A better understanding of potential neuroinvasion pathways can support the design of more effective therapeutic regiments for the treatment of neurological disease caused by RVFV.


Assuntos
Encefalite Viral/virologia , Osso Etmoide/virologia , Mucosa Olfatória/virologia , Febre do Vale de Rift/patologia , Vírus da Febre do Vale do Rift/fisiologia , Animais , Modelos Animais de Doenças , Encefalite Viral/patologia , Osso Etmoide/patologia , Feminino , Exposição por Inalação , Mucosa Olfatória/patologia , Ratos , Ratos Endogâmicos Lew , Febre do Vale de Rift/virologia
16.
PLoS Pathog ; 15(6): e1007833, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220182

RESUMO

Rift Valley fever virus (RVFV) causes severe disease in livestock concurrent with zoonotic transmission to humans. A subset of people infected with RVFV develop encephalitis, and significant gaps remain in our knowledge of how RVFV causes pathology in the brain. We previously found that, in Lewis rats, subcutaneous inoculation with RVFV resulted in subclinical disease while inhalation of RVFV in a small particle aerosol caused fatal encephalitis. Here, we compared the disease course of RVFV in Lewis rats after each different route of inoculation in order to understand more about pathogenic mechanisms of fatal RVFV encephalitis. In aerosol-infected rats with lethal encephalitis, neutrophils and macrophages were the major cell types infiltrating the CNS, and this was concomitant with microglia activation and extensive cytokine inflammation. Despite this, prevention of neutrophil infiltration into the brain did not ameliorate disease. Unexpectedly, in subcutaneously-inoculated rats with subclinical disease, detectable viral RNA was found in the brain along with T-cell infiltration. This study sheds new light on the pathogenic mechanisms of RVFV encephalitis.


Assuntos
Encéfalo/imunologia , Encefalite Viral/imunologia , Macrófagos/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/imunologia , Aerossóis , Animais , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular , Citocinas/imunologia , Encefalite Viral/patologia , Feminino , Humanos , Macrófagos/patologia , Neutrófilos/patologia , Ratos , Ratos Endogâmicos Lew , Febre do Vale de Rift/patologia
17.
J Gen Virol ; 101(11): 1156-1169, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32821033

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), emerged at the end of 2019 and by mid-June 2020 the virus had spread to at least 215 countries, caused more than 8 000 000 confirmed infections and over 450 000 deaths, and overwhelmed healthcare systems worldwide. Like severe acute respiratory syndrome coronavirus (SARS-CoV), which emerged in 2002 and caused a similar disease, SARS-CoV-2 is a betacoronavirus. Both viruses use human angiotensin-converting enzyme 2 (hACE2) as a receptor to enter cells. However, the SARS-CoV-2 spike (S) glycoprotein has a novel insertion that generates a putative furin cleavage signal and this has been postulated to expand the host range. Two low-passage (P) strains of SARS-CoV-2 (Wash1 : P4 and Munich : P1) were cultured twice in Vero E6 cells and characterized virologically. Sanger and MinION sequencing demonstrated significant deletions in the furin cleavage signal of Wash1 : P6 and minor variants in the Munich : P3 strain. Cleavage of the S glycoprotein in SARS-CoV-2-infected Vero E6 cell lysates was inefficient even when an intact furin cleavage signal was present. Indirect immunofluorescence demonstrated that the S glycoprotein reached the cell surface. Since the S protein is a major antigenic target for the development of neutralizing antibodies, we investigated the development of neutralizing antibody titres in serial serum samples obtained from COVID-19 human patients. These were comparable regardless of the presence of an intact or deleted furin cleavage signal. These studies illustrate the need to characterize virus stocks meticulously prior to performing either in vitro or in vivo pathogenesis studies.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Furina/metabolismo , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Replicação Viral , Adaptação Fisiológica , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , Chlorocebus aethiops , Furina/imunologia , Variação Genética , Hospitalização , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Testes de Neutralização , Proteólise , RNA Viral , Análise de Sequência de RNA , Células Vero , Carga Viral
19.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118127

RESUMO

Rift Valley Fever (RVF) is an emerging arboviral disease of livestock and humans. Although the disease is caused by a mosquito-borne virus, humans are infected through contact with, or inhalation of, virus-laden particles from contaminated animal carcasses. Some individuals infected with RVF virus (RVFV) develop meningoencephalitis, resulting in morbidity and mortality. Little is known about the pathogenic mechanisms that lead to neurologic sequelae, and thus, animal models that represent human disease are needed. African green monkeys (AGM) exposed to aerosols containing RVFV develop a reproducibly lethal neurological disease that resembles human illness. To understand the disease process and identify biomarkers of lethality, two groups of 5 AGM were infected by inhalation with either a lethal or a sublethal dose of RVFV. Divergence between lethal and sublethal infections occurred as early as 2 days postinfection (dpi), at which point CD8+ T cells from lethally infected AGM expressed activated caspase-3 and simultaneously failed to increase levels of major histocompatibility complex (MHC) class II molecules, in contrast to surviving animals. At 4 dpi, lethally infected animals failed to demonstrate proliferation of total CD4+ and CD8+ T cells, in contrast to survivors. These marked changes in peripheral blood cells occur much earlier than more-established indicators of severe RVF disease, such as granulocytosis and fever. In addition, an early proinflammatory (gamma interferon [IFN-γ], interleukin 6 [IL-6], IL-8, monocyte chemoattractant protein 1 [MCP-1]) and antiviral (IFN-α) response was seen in survivors, while very late cytokine expression was found in animals with lethal infections. By characterizing immunological markers of lethal disease, this study furthers our understanding of RVF pathogenesis and will allow the testing of therapeutics and vaccines in the AGM model.IMPORTANCE Rift Valley Fever (RVF) is an important emerging viral disease for which we lack both an effective human vaccine and treatment. Encephalitis and neurological disease resulting from RVF lead to death or significant long-term disability for infected people. African green monkeys (AGM) develop lethal neurological disease when infected with RVF virus by inhalation. Here we report the similarities in disease course between infected AGM and humans. For the first time, we examine the peripheral immune response during the course of infection in AGM and show that there are very early differences in the immune response between animals that survive infection and those that succumb. We conclude that AGM are a novel and suitable monkey model for studying the neuropathogenesis of RVF and for testing vaccines and therapeutics against this emerging viral pathogen.


Assuntos
Biomarcadores/sangue , Citocinas/sangue , Meningoencefalite/patologia , Febre do Vale de Rift/patologia , Linfócitos T/imunologia , Animais , Anticorpos Antivirais/imunologia , Caspase 3/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Genes MHC da Classe II , Humanos , Ativação Linfocitária , Meningoencefalite/imunologia , Meningoencefalite/virologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/fisiologia , Vírion/imunologia
20.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253680

RESUMO

Experimental infection of animals with aerosols containing pathogenic agents is essential for an understanding of the natural history and pathogenesis of infectious disease as well as evaluation of potential treatments. We evaluated whether the Aeroneb nebulizer, a vibrating mesh nebulizer, would serve as an alternative to the Collison nebulizer, the "gold standard" for generating infectious bioaerosols. While the Collison possesses desirable properties that have contributed to its longevity in infectious disease aerobiology, concerns have lingered about the liquid volume and concentration of the infectious agent required to cause disease and the damage that jet nebulization causes to the agent. Fluorescein salt was added to the nebulizer contents to assess pathogen loss during aerosolization. Relative to fluorescein salt, loss of influenza virus during aerosolization was worse with the Collison than with the Aeroneb. Four other viruses also had superior aerosol performance with the Aeroneb. The Aeroneb did not improve the aerosol performance for a vegetative bacterium, Francisella tularensis Environmental parameters collected during the aerosol challenges indicated that the Aeroneb generated a higher relative humidity in exposure chambers while not affecting other environmental parameters. The aerosol mass median aerodynamic diameter (MMAD) was generally larger and more disperse for aerosols generated by the Aeroneb than what is seen with the Collison, but ≥80% of particles were within the range that would reach the lower respiratory tract and alveolar regions. The improved aerosol performance and generated particle size range suggest that for viral pathogens, the Aeroneb is a suitable alternative to the Collison three-jet nebulizer for use in experimental infection of animals.IMPORTANCE Respiratory infection by pathogens via aerosol remains a major concern for both natural disease transmission as well as intentional release of biological weapons. Critical to understanding the disease course and pathogenesis of inhaled pathogens are studies in animal models conducted under tightly controlled experimental settings, including the inhaled dose. The route of administration, particle size, and dose can affect disease progression and outcome. Damage to or loss of pathogens during aerosolization could increase the dose required to cause disease and could stimulate innate immune responses, altering outcome. Aerosol generators that reduce pathogen loss would be ideal. This study compares two aerosol generators to determine which is superior for animal studies. Aerosol research methods and equipment need to be well characterized to optimize the development of animal models for respiratory pathogens, including bioterrorism agents. This information will be critical for pivotal efficacy studies in animals to evaluate potential vaccines or treatments against these agents.


Assuntos
Aerossóis/análise , Técnicas Microbiológicas/métodos , Nebulizadores e Vaporizadores , Técnicas Microbiológicas/instrumentação , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA