Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 80(6): 1092-1103.e4, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33248025

RESUMO

The nucleocapsid (N) protein of coronaviruses serves two major functions: compaction of the RNA genome in the virion and regulation of viral gene transcription. It is not clear how the N protein mediates such distinct functions. The N protein contains two RNA-binding domains surrounded by regions of intrinsic disorder. Phosphorylation of the central disordered region promotes the protein's transcriptional function, but the underlying mechanism is not known. Here, we show that the N protein of SARS-CoV-2, together with viral RNA, forms biomolecular condensates. Unmodified N protein forms partially ordered gel-like condensates and discrete 15-nm particles based on multivalent RNA-protein and protein-protein interactions. Phosphorylation reduces these interactions, generating a more liquid-like droplet. We propose that distinct oligomeric states support the two functions of the N protein: unmodified protein forms a structured oligomer that is suited for nucleocapsid assembly, and phosphorylated protein forms a liquid-like compartment for viral genome processing.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/química , Multimerização Proteica , RNA Viral/química , SARS-CoV-2/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Domínios Proteicos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
2.
Mol Microbiol ; 96(6): 1226-39, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25784162

RESUMO

Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica
3.
Mol Microbiol ; 95(6): 1036-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524641

RESUMO

Members of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins bind to AU-rich regions in target mRNAs, leading to their deadenylation and decay. Family members in Saccharomyces cerevisiae influence iron metabolism, whereas the single protein expressed in Schizosaccharomyces pombe, Zfs1, regulates cell-cell interactions. In the human pathogen Candida albicans, deep sequencing of mutants lacking the orthologous protein, Zfs1, revealed significant increases (> 1.5-fold) in 156 transcripts. Of these, 113 (72%) contained at least one predicted TTP family member binding site in their 3'UTR, compared with only 3 of 56 (5%) down-regulated transcripts. The zfs1Δ/Δ mutant was resistant to 3-amino-1,2,4-triazole, perhaps because of increased expression of the potential target transcript encoded by HIS3. Sequences of the proteins encoded by the putative Zfs1 targets were highly conserved among other species within the fungal CTG clade, while the predicted Zfs1 binding sites in these mRNAs often 'disappeared' with increasing evolutionary distance from the parental species. C. albicans Zfs1 bound to the ideal mammalian TTP binding site with high affinity, and Zfs1 was associated with target transcripts after co-immunoprecipitation. Thus, the biochemical activities of these proteins in fungi are highly conserved, but Zfs1-like proteins may target different transcripts in each species.


Assuntos
Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Processamento Pós-Transcricional do RNA , Tristetraprolina/genética , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Sítios de Ligação , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Sequência Conservada , Regulação para Baixo/genética , Proteínas Fúngicas/química , Sequenciamento de Nucleotídeos em Larga Escala , Imunoprecipitação , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Estrutura Terciária de Proteína , Estabilidade de RNA , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência , Tristetraprolina/química , Regulação para Cima
4.
Nat Commun ; 13(1): 341, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039540

RESUMO

Robust regulatory signals in the cell often depend on interactions between short linear motifs (SLiMs) and globular proteins. Many of these interactions are poorly characterized because the binding proteins cannot be produced in the amounts needed for traditional methods. To address this problem, we developed a single-molecule off-rate (SMOR) assay based on microscopy of fluorescent ligand binding to immobilized protein partners. We used it to characterize substrate binding to the Anaphase-Promoting Complex/Cyclosome (APC/C), a ubiquitin ligase that triggers chromosome segregation. We find that SLiMs in APC/C substrates (the D box and KEN box) display distinct affinities and specificities for the substrate-binding subunits of the APC/C, and we show that multiple SLiMs in a substrate generate a high-affinity multivalent interaction. The remarkably adaptable substrate-binding mechanisms of the APC/C have the potential to govern the order of substrate destruction in mitosis.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula , Motivos de Aminoácidos , Sequência de Aminoácidos , Anisotropia , Humanos , Proteínas Imobilizadas/metabolismo , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteólise , Especificidade por Substrato
5.
J Fungi (Basel) ; 7(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375490

RESUMO

The human fungal pathogen Candida albicans can form biofilms on biotic and abiotic surfaces, which are inherently resistant to antifungal drugs. We screened the Chembridge Small Molecule Diversity library containing 30,000 "drug-like" small molecules and identified 45 compounds that inhibited biofilm formation. These 45 compounds were then tested for their abilities to disrupt mature biofilms and for combinatorial interactions with fluconazole, amphotericin B, and caspofungin, the three antifungal drugs most commonly prescribed to treat Candida infections. In the end, we identified one compound that moderately disrupted biofilm formation on its own and four compounds that moderately inhibited biofilm formation and/or moderately disrupted mature biofilms only in combination with either caspofungin or fluconazole. No combinatorial interactions were observed between the compounds and amphotericin B. As members of a diversity library, the identified compounds contain "drug-like" chemical backbones, thus even seemingly "weak hits" could represent promising chemical starting points for the development and the optimization of new classes of therapeutics designed to target Candida biofilms.

6.
Microorganisms ; 8(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443498

RESUMO

Biofilms formed by the human fungal pathogen Candida albicans are naturally resistant to many of the antifungal agents commonly used in the clinic. We screened a library containing 1600 clinically tested drug compounds to identify compounds that inhibit C. albicans biofilm formation. The compounds that emerged from the initial screen were validated in a secondary screen and then tested for (1) their abilities to disrupt mature biofilms and (2) for synergistic interactions with representatives of the three antifungal agents most commonly prescribed to treat Candida infections, fluconazole, amphotericin B, and caspofungin. Twenty compounds had antibiofilm activity in at least one of the secondary assays and several affected biofilms but, at the same concentration, had little or no effect on planktonic (suspension) growth of C. albicans. Two calcium channel blockers, a selective serotonin reuptake inhibitor, and an azole-based proton pump inhibitor were among the hits, suggesting that members of these three classes of drugs or their derivatives may be useful for treating C. albicans biofilm infections.

7.
G3 (Bethesda) ; 10(8): 2593-2600, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32487674

RESUMO

The fungal species Candida albicans is both a member of the human microbiome and a fungal pathogen. C. albicans undergoes several different morphological transitions, including one called white-opaque switching. Here, cells reversibly switch between two states, "white" and "opaque," and each state is heritable through many cell generations. Each cell type has a distinct cellular and colony morphology and they differ in many other properties including mating, nutritional specialization, and interactions with the innate immune system. Previous genetic screens to gain insight into white-opaque switching have focused on certain classes of genes (for example transcriptional regulators or chromatin modifying enzymes). In this paper, we examined 172 deletion mutants covering a broad range of cell functions. We identified 28 deletion mutants with at least a fivefold effect on switching frequencies; these cover a wide variety of functions ranging from membrane sensors to kinases to proteins of unknown function. In agreement with previous reports, we found that components of the pheromone signaling cascade affect white-to-opaque switching; however, our results suggest that the major effect of Cek1 on white-opaque switching occurs through the cell wall damage response pathway. Most of the genes we identified have not been previously implicated in white-opaque switching and serve as entry points to understand new aspects of this morphological transition.


Assuntos
Candida albicans , Regulação Fúngica da Expressão Gênica , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento , Humanos , Fenótipo , Feromônios , Transdução de Sinais
8.
bioRxiv ; 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32637943

RESUMO

The nucleocapsid (N) protein of coronaviruses serves two major functions: compaction of the RNA genome in the virion and regulation of viral gene transcription in the infected cell 1-3 . The N protein contains two globular RNA-binding domains surrounded by regions of intrinsic disorder 4 . Phosphorylation of the central disordered region is required for normal viral genome transcription 5,6 , which occurs in a cytoplasmic structure called the replication transcription complex (RTC) 7-11 . It is not known how phosphorylation controls N protein function. Here we show that the N protein of SARS-CoV-2, together with viral RNA, forms biomolecular condensates 12-15 . Unmodified N protein forms partially ordered gel-like structures that depend on multivalent RNA-protein and protein-protein interactions. Phosphorylation reduces a subset of these interactions, generating a more liquid-like droplet. We speculate that distinct oligomeric states support the two functions of the N protein: unmodified protein forms a structured oligomer that is suited for nucleocapsid assembly, and phosphorylated protein forms a liquid-like compartment for viral genome processing. Inhibitors of N protein phosphorylation could therefore serve as antiviral therapy.

9.
mBio ; 7(5)2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27624133

RESUMO

UNLABELLED: Candida albicans is a fungal species that is part of the normal human microbiota and also an opportunistic pathogen capable of causing mucosal and systemic infections. C. albicans cells proliferate in a planktonic (suspension) state, but they also form biofilms, organized and tightly packed communities of cells attached to a solid surface. Biofilms colonize many niches of the human body and persist on implanted medical devices, where they are a major source of new C. albicans infections. Here, we used an unbiased and global substrate-profiling approach to discover proteolytic activities produced specifically by C. albicans biofilms, compared to planktonic cells, with the goal of identifying potential biofilm-specific diagnostic markers and targets for therapeutic intervention. This activity-based profiling approach, coupled with proteomics, identified Sap5 (Candidapepsin-5) and Sap6 (Candidapepsin-6) as major biofilm-specific proteases secreted by C. albicans Fluorogenic peptide substrates with selectivity for Sap5 or Sap6 confirmed that their activities are highly upregulated in C. albicans biofilms; we also show that these activities are upregulated in other Candida clade pathogens. Deletion of the SAP5 and SAP6 genes in C. albicans compromised biofilm development in vitro in standard biofilm assays and in vivo in a rat central venous catheter biofilm model. This work establishes secreted proteolysis as a promising enzymatic marker and potential therapeutic target for Candida biofilm formation. IMPORTANCE: Biofilm formation by the opportunistic fungal pathogen C. albicans is a major cause of life-threatening infections. This work provides a global characterization of secreted proteolytic activity produced specifically by C. albicans biofilms. We identify activity from the proteases Sap5 and Sap6 as highly upregulated during C. albicans biofilm formation and develop Sap-cleavable fluorogenic substrates that enable the detection of biofilms from C. albicans and also from additional pathogenic Candida species. Furthermore, SAP5 and SAP6 deletions confirm that both proteases are required for proper biofilm development in vitro and in vivo We propose that secreted proteolysis is a promising marker for the diagnosis and potential therapeutic targeting of Candida biofilm-associated infections.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Biofilmes/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/fisiologia , Proteínas Fúngicas/metabolismo , Proteólise , Animais , Candidíase/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Modelos Animais de Doenças , Proteoma/análise , Ratos
10.
mBio ; 5(3): e01201-14, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24917598

RESUMO

UNLABELLED: Biofilms are resilient, surface-associated communities of cells with specialized properties (e.g., resistance to drugs and mechanical forces) that are distinct from those of suspension (planktonic) cultures. Biofilm formation by the opportunistic human fungal pathogen Candida albicans is medically relevant because C. albicans infections are highly correlated with implanted medical devices, which provide efficient substrates for biofilm formation; moreover, biofilms are inherently resistant to antifungal drugs. Biofilms are also important for C. albicans to colonize diverse niches of the human host. Here, we describe four core members of a conserved histone deacetylase complex in C. albicans (Set3, Hos2, Snt1, and Sif2) and explore the effects of their mutation on biofilm formation. We find that these histone deacetylase complex members are needed for proper biofilm formation, including dispersal of cells from biofilms and multifactorial drug resistance. Our results underscore the importance of the physical properties of biofilms in contributing to drug resistance and dispersal and lay a foundation for new strategies to target biofilm dispersal as a potential antifungal intervention. IMPORTANCE: Through the formation of biofilms--surface-associated communities of cells--microorganisms can establish infections, become drug resistant, and evade the host immune system. Here we investigate how four core members of a conserved histone deacetylase complex mediate biofilm formation by Candida albicans, the major fungal pathogen of humans. We show that this histone deacetylase complex is required for biofilm dispersal, a process through which cells leave the biofilm to establish new infections. We also show that the deacetylase complex mediates biofilm drug resistance. This work provides new insight into how the physical properties of biofilms affect dispersal and drug resistance and suggests new potential antifungal strategies that could be effective against biofilms.


Assuntos
Antifúngicos/farmacologia , Biofilmes , Candida albicans/enzimologia , Candida albicans/fisiologia , Candidíase/microbiologia , Farmacorresistência Fúngica , Proteínas Fúngicas/metabolismo , Histona Desacetilases/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/genética , Humanos , Testes de Sensibilidade Microbiana
11.
Curr Biol ; 24(20): 2411-6, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25308076

RESUMO

The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.


Assuntos
Bactérias Anaeróbias/fisiologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Anaerobiose , Bactérias Anaeróbias/classificação , Técnicas de Cocultura , Técnicas Microbiológicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA