RESUMO
Aerosol phase state is critical for quantifying aerosol effects on climate and air quality. However, significant challenges remain in our ability to predict and quantify phase state during its evolution in the atmosphere. Herein, we demonstrate that aerosol phase (liquid, semisolid, solid) exhibits a diel cycle in a mixed forest environment, oscillating between a viscous, semisolid phase state at night and liquid phase state with phase separation during the day. The viscous nighttime particles existed despite higher relative humidity and were independently confirmed by bounce factor measurements and atomic force microscopy. High-resolution mass spectrometry shows the more viscous phase state at night is impacted by the formation of terpene-derived and higher molecular weight secondary organic aerosol (SOA) and smaller inorganic sulfate mass fractions. Larger daytime particulate sulfate mass fractions, as well as a predominance of lower molecular weight isoprene-derived SOA, lead to the liquid state of the daytime particles and phase separation after greater uptake of liquid water, despite the lower daytime relative humidity. The observed diel cycle of aerosol phase should provoke rethinking of the SOA atmospheric lifecycle, as it suggests diurnal variability in gas-particle partitioning and mixing time scales, which influence aerosol multiphase chemistry, lifetime, and climate impacts.
Assuntos
Atmosfera , Sulfatos , Aerossóis , Química Orgânica , FlorestasRESUMO
Atmospheric aerosols play an important role in Earth's radiative balance directly, by scattering and absorbing radiation, and indirectly, by acting as cloud condensation nuclei (CCN). Atmospheric aerosol is dominated by secondary organic aerosol (SOA) formed by the oxidation of biogenic volatile organic compounds (BVOCs). Green leaf volatiles (GLVs) are a class of BVOCs that contribute to SOA, yet their role in the Earth's radiative budget is poorly understood. In this work we measured the scattering efficiency (at 450, 525, and 635 nm), absorption efficiency (between 190 and 900 nm), particle phase, bulk chemical properties (O:C, H:C), and molecular-level composition of SOA formed from the ozonolysis of two GLVs: cis-3-hexenol (HXL) and cis-3-hexenyl acetate (CHA). Both HXL and CHA produced SOA that was weakly absorbing, yet CHA-SOA was a more efficient absorber than HXL-SOA. The scatter efficiency of SOA from both systems was wavelength-dependent, with the stronger dependence exhibited by HXL-SOA, likely due to differences in particle size. HXL-SOA formed under both dry (10% RH) and wet (70% RH) conditions had the same bulk chemical properties (O:C), yet significantly different optical properties, which was attributed to differences in molecular-level composition. We have found that SOA derived from green leaf volatiles has the potential to affect the Earth's radiative budget, and also that bulk chemical properties can be insufficient to predict SOA optical properties.
Assuntos
Aerossóis/química , Umidade , Oxirredução , Tamanho da Partícula , Compostos Orgânicos Voláteis/químicaRESUMO
The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX's scientific objectives are to quantify CO2 and CH4 emission rates at 1 km resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.
RESUMO
Coastal marine sediments are important sites of methylmercury (MMHg) production, and dissolved efflux provides an important source of MMHg to near-shore, and possibly offshore, water columns and food webs. We measured the flux of MMHg across the sediment-water interface at four stations in Boston Harbor that span a range of infaunal population densities and bioirrigation intensities. At each station we carried out total MMHg flux measurements using core incubations and collected near-surface pore waters to establish MMHg gradients for diffusive flux calculations. The flux cores were also imaged by CT scanning to determine the distribution of infaunal burrows, and pore-water sulfide and 222Rn profiles were measured. Total MMHg fluxes, measured using core incubations, ranged from -4 to 191 pmol m(-2) d(-1), and total MMHg fluxes were strongly correlated with burrow densities at the stations. Estimated diffusive fluxes, calculated based on MMHg concentration gradients below the sediment-water interface, were much lower than total fluxes at three of the stations, ranging from 2-19 pmol m(-2) d(-1). These results indicate that MMHg exchange may be significantly enhanced over molecular diffusion in bioturbated sediments. Furthermore, burrow density provides a strong predictor of total MMHg flux. Pore-water exchange of both dissolved MMHg and 222Rn, a naturally occurring pore-watertracer, increased across the range of observed burrow densities, suggesting that the presence of burrows enhances both MMHg production and flux.