Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 26(3): 801-813, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433939

RESUMO

We describe a novel, two-nanoparticle mRNA delivery system and show that it is highly effective as a means of intracellular enzyme replacement therapy (i-ERT) using a murine model of ornithine transcarbamylase deficiency (OTCD). Our Hybrid mRNA Technology delivery system (HMT) comprises an inert lipid nanoparticle that protects the mRNA from nucleases in the blood as it distributes to the liver and a polymer micelle that targets hepatocytes and triggers endosomal release of mRNA. This results in high-level synthesis of the desired protein specifically in the liver. HMT delivery of human OTC mRNA normalizes plasma ammonia and urinary orotic acid levels, and leads to a prolonged survival benefit in the murine OTCD model. HMT represents a unique, non-viral mRNA delivery method that allows multi-dose, systemic administration for treatment of single-gene inherited metabolic diseases.


Assuntos
Terapia Genética , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Ornitina Carbamoiltransferase/genética , RNA Mensageiro/genética , Animais , Modelos Animais de Doenças , Terapia Genética/métodos , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Micelas , Nanopartículas , Nanotecnologia , Ornitina Carbamoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Polímeros , RNA Mensageiro/administração & dosagem , RNA Interferente Pequeno/genética , Ureia/metabolismo
2.
Nucleic Acids Res ; 39(5): 1823-32, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21047800

RESUMO

siRNAs confer sequence specific and robust silencing of mRNA. By virtue of these properties, siRNAs have become therapeutic candidates for disease intervention. However, their use as therapeutic agents can be hampered by unintended off-target effects by either or both strands of the siRNA duplex. We report here that unlocked nucleobase analogs (UNAs) confer desirable properties to siRNAs. Addition of a single UNA at the 5'-terminus of the passenger strand blocks participation of the passenger strand in RISC-mediated target down-regulation with a concomitant increase in guide strand activity. Placement of a UNA in the seed region of the guide strand prevents miRNA-like off-target silencing without compromising siRNA activity. Most significantly, combined substitution of UNA at the 3'-termini of both strands, the addition of a UNA at the 5'-terminus of the passenger strand, and a single UNA in the seed region of the guide strand, reduced the global off-target events by more than 10-fold compared to unmodified siRNA. The reduction in off-target events was specific to UNA placement in the siRNA, with no apparent new off-target events. Taken together, these results indicate that when strategically placed, UNA substitutions have important implications for the design of safe and effective siRNA-based therapeutics.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/química , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , MicroRNAs/metabolismo
3.
Mol Ther ; 19(6): 1141-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21505423

RESUMO

We demonstrate a systematic and rational approach to create a library of natural and modified, dialkylated amino acids based upon arginine for development of an efficient small interfering RNA (siRNA) delivery system. These amino acids, designated DiLA2 compounds, in conjunction with other components, demonstrate unique properties for assembly into monodisperse, 100-nm small liposomal particles containing siRNA. We show that DiLA2-based liposomes undergo a pH-dependent phase transition to an inverted hexagonal phase facilitating efficient siRNA release from endosomes to the cytosol. Using an arginine-based DiLA2, cationic liposomes were prepared that provide high in vivo siRNA delivery efficiency and are well-tolerated in both cell and animal models. DiLA2-based liposomes demonstrate a linear dose-response with an ED50 of 0.1 mg/kg against liver-specific target genes in BALB/c mice.


Assuntos
Aminoácidos/química , Lipossomos/química , RNA Interferente Pequeno/genética , Animais , Feminino , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C
4.
Mol Ther ; 19(5): 928-35, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21364537

RESUMO

Harnessing RNA interference (RNAi) to silence aberrant gene expression is an emerging approach in cancer therapy. Selective inhibition of an overexpressed gene via RNAi requires a highly efficacious, target-specific short interfering RNA (siRNA) and a safe and efficient delivery system. We have developed siRNA constructs (UsiRNA) that contain unlocked nucleobase analogs (UNA) targeting survivin and polo-like kinase-1 (PLK1) genes. UsiRNAs were encapsulated into dialkylated amino acid-based liposomes (DiLA(2)) containing a nor-arginine head group, cholesteryl hemisuccinate (CHEMS), cholesterol and 1, 2-dimyristoyl-phosphatidylethanolamine-polyethyleneglycol 2000 (DMPE-PEG2000). In an orthotopic bladder cancer mouse model, intravesical treatment with survivin or PLK1 UsiRNA in DiLA(2) liposomes at 1.0 and 0.5 mg/kg resulted in 90% and 70% inhibition of survivin or PLK1 mRNA, respectively. This correlated with a dose-dependent decrease in tumor volumes which was sustained over a 3-week period. Silencing of survivin and PLK1 mRNA was confirmed to be RNA-induced silencing complex mediated as specific cleavage products were detected in bladder tumors over the duration of the study. This report suggests that intravesical instillation of survivin or PLK1 UsiRNA can serve as a potential therapeutic modality for treatment of bladder cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Administração Intravesical , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Colesterol/administração & dosagem , Ésteres do Colesterol/administração & dosagem , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Lipossomos/administração & dosagem , Camundongos , Camundongos Nus , Fosfatidiletanolaminas/administração & dosagem , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Survivina , Neoplasias da Bexiga Urinária/patologia , Quinase 1 Polo-Like
5.
Leuk Res ; 33(1): 129-39, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18676016

RESUMO

We demonstrate here that cytarabine and daunorubicin, a standard drug combination used in the treatment of leukaemia, exhibits drug ratio-dependent synergistic antitumor activity in vitro and in vivo. A cytarabine:daunorubicin molar ratio of 5:1 displayed the greatest degree of synergy and minimum antagonism in a panel of 15 tumor cell lines in vitro. Co-encapsulating cytarabine and daunorubicin inside liposomes maintained the synergistic drug ratio in plasma for 24h post-injection. Liposome-encapsulated cytarabine:daunorubicin combinations exhibited drug ratio-dependent in vivo efficacy with the 5:1 molar drug ratio (designated CPX-351) having the greatest therapeutic index, despite using sub-MTD daunorubicin doses. CPX-351 exhibited superior therapeutic activity compared to free-drug cocktails, with high proportions of long-term survivors, consistent with in vivo synergy. The therapeutic advantage of CPX-351 was associated with prolonged maintenance of synergistic drug ratios in bone marrow. These results indicate that in vitro informatics on cytarabine:daunorubicin cytotoxicity can be translated in vivo to optimize the efficacy of anticancer drug combinations by controlling the exposure of drug ratios with drug delivery vehicles.


Assuntos
Antineoplásicos/farmacologia , Citarabina/farmacologia , Daunorrubicina/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células , Citarabina/administração & dosagem , Citarabina/farmacocinética , Daunorrubicina/administração & dosagem , Daunorrubicina/farmacocinética , Citometria de Fluxo , Humanos , Lipossomos , Camundongos
6.
Oncol Res ; 16(8): 361-74, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913044

RESUMO

Whether anticancer drug combinations act synergistically or antagonistically often depends on the ratio of the agents being combined. We show here that combinations of irinotecan and floxuridine exhibit drug ratio-dependent cytotoxicity in a broad panel of tumor cell lines in vitro where a 1:1 molar ratio consistently provided synergy and avoided antagonism. In vivo delivery of irinotecan and floxuridine coencapsulated inside liposomes at the synergistic 1:1 molar ratio (referred to as CPX-1) lead to greatly enhanced efficacy compared to the two drugs administered as a saline-based cocktail in a number of human xenograft and murine tumor models. When compared to liposomal irinotecan or liposomal floxuridine, the therapeutic activity of CPX-1 in vivo was not only superior to the individual liposomal agents, but the extent of tumor growth inhibition was greater than that predicted for combining the activities of the individual agents. In contrast, liposome delivery of irinotecan:floxuridine ratios shown to be antagonistic in vitro provided antitumor activity that was actually less than that achieved with liposomal irinotecan alone, indicative of in vivo antagonism. Synergistic antitumor activity observed for CPX-1 was associated with maintenance of the 1:1 irinotecan:floxuridine molar ratio in plasma and tumor tissue over 16-24 h. In contrast, injection of the drugs combined in saline resulted in irinotecan:floxuridine ratios that changed 10-fold within 1 h in plasma and sevenfold within 4 h in tumor tissue. These results indicate that substantial improvements in the efficacy of drug combinations may be achieved by maintaining in vitro-identified synergistic drug ratios after systemic administration using drug delivery vehicles.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/análogos & derivados , Floxuridina/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Camptotecina/administração & dosagem , Camptotecina/sangue , Camptotecina/farmacocinética , Sobrevivência Celular , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Combinação de Medicamentos , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Feminino , Floxuridina/sangue , Floxuridina/farmacocinética , Humanos , Injeções Intravenosas , Irinotecano , Lipossomos , Camundongos , Neoplasias/metabolismo , Veículos Farmacêuticos , Taxa de Sobrevida , Distribuição Tecidual , Carga Tumoral , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Gene Ther ; 11(2): 128-34, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14671672

RESUMO

Gene therapy utilizing lipid-based delivery systems holds tremendous promise for the treatment of cancer. However, due to the potential adverse inflammatory and/or immune effects upon systemic administration, treatments thus far have been predominantly limited to intratumoral or regional treatment. Previous studies from our group have demonstrated the antitumor efficacy of systemically administered, folate-targeted, lipid-protamine-DNA complexes (LPD-PEG-Folate) against breast cancer using an immunodeficient xenogenic murine model. In the current study, the antitumor efficacy of LPD-PEG-Folate in a syngeneic, immune competent, murine model of breast cancer was examined. In this model, the potential inflammatory or immune responses and their effects on systemic delivery can be addressed. The 410.4 murine breast adenocarcinoma cell line was initially evaluated in vitro for its interactions with LPD-PEG-Folate and control LPD-PEG formulations. Utilizing fluorescently labeled formulations and fluorescence-activated cell sorting (FACS) analysis, a 1.6-fold enhancement of binding and internalization of LPD-PEG-Folate over LPD-PEG formulations was observed, suggestive of specific receptor interaction. Increased binding was manifested as 5-26-fold increases in luciferase gene expression in 410.4 cell transfection when comparing LPD-PEG-Folate to LPD-PEG. Moreover, in vivo treatment of 410.4 breast tumors in BALB/c mice with i.v. injected LPD-PEG-Folate delivering the HSV-1 thymidine kinase (TK) gene, in combination with gancyclovir treatment, resulted in a significant reduction in mean tumor volume (260.1 mm3) compared to the LPD-PEG-TK (914.1 mm3), as well as the vehicle (749.7 mm3) and untreated (825.3 mm3) control groups (day 25, P<.019). In addition to a reduced tumor volume, LPD-PEG-Folate-TK treatment also increased median survival from 25 days in the nontargeted LPD-PEG-TK groups to 31 days (P=.0011), which correlated with the termination of treatment. Together, these results demonstrate that in the context of a fully functional immune system, LPD-PEG-Folate-TK treatment possesses significant specific antitumor efficacy and the potential for further preclinical development.


Assuntos
Adenocarcinoma/terapia , DNA/administração & dosagem , Ácido Fólico/administração & dosagem , Terapia Genética/métodos , Lipossomos , Neoplasias Mamárias Experimentais/terapia , Timidina Quinase/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Proteínas de Transporte/antagonistas & inibidores , Feminino , Receptores de Folato com Âncoras de GPI , Humanos , Imunocompetência , Metabolismo dos Lipídeos , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Polietilenoglicóis , Protaminas , Receptores de Superfície Celular/antagonistas & inibidores
8.
J Liposome Res ; 13(3-4): 231-47, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14670229

RESUMO

The incorporation of pegylated lipid into Lipid-Protamine-DNA (LPD-PEG) lipopolyplexes causes a decrease of their in vitro transfection activity. This can be partially attributed to a reduction in particle binding to cells. To restore particle binding and specifically target LPD formulations to tumor cells, the lipid-peptide conjugate DSPE-PEG5K-succinyl-ACDCRGDCFCG-COOH (DSPE-PEG5K-RGD-4C) was generated and incorporated into LPD formulations (LPD-PEG-RGD). LPD-PEG-RGD was characterized with respect to its biophysical and biological properties. The Incorporation of DSPE-PEG5K-RGD-4C ligands into LPD formulations results in a 5 and a 15 fold increase in the LPD-PEG-RGD binding and uptake, respectively, over an LPD-PEG formulation. Enhancement of binding and uptake resulted in a 100 fold enhancement of transfection activity. Moreover, this transfection enhancement was specific to cells expressing appropriate integrin receptors (MDA-MB-231). Huh7 cells, known for their low level of alphavbeta3 and alphavbeta5 integrin expression, failed to show RGD mediated transfection enhancement. This transfection enhancement can be abolished in a competitive manner using free RGD peptide, but not an RGE control peptide. Results demonstrated RGD mediated enhanced LPD-PEG cell binding and transfection in cells expressing the integrin receptor. These formulations provide the basis for effective, targeted, systemic gene delivery.


Assuntos
DNA/química , Lipídeos/química , Lipossomos/química , Oligopeptídeos/química , Protaminas/química , Ligação Competitiva , Linhagem Celular Tumoral , DNA/metabolismo , DNA/farmacocinética , Humanos , Ligantes , Metabolismo dos Lipídeos , Lipídeos/farmacocinética , Lipossomos/metabolismo , Lipossomos/farmacocinética , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacocinética , Tamanho da Partícula , Plasmídeos/química , Plasmídeos/genética , Polietilenoglicóis/química , Protaminas/metabolismo , Protaminas/farmacocinética , Soro/química , Soro/metabolismo , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA