Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Protein Expr Purif ; 219: 106484, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614377

RESUMO

Cancer and antibiotic resistance represent significant global challenges, affecting public health and healthcare systems worldwide. Lectin, a carbohydrate-binding protein, displays various biological properties, including antimicrobial and anticancer activities. This study focused on anticancer and antibacterial properties of Alocasia macrorrhiza lectin (AML). AML, with a molecular weight of 11.0 ± 1.0 kDa was purified using Ion-exchange chromatography, and the homotetrameric form was detected by gel-filtration chromatography. It agglutinates mouse erythrocytes, that was inhibited by 4-Nitrophenyl-α-d-mannopyranoside. Maximum hemagglutination activity was observed below 60 °C and within a pH range from 8 to 11. Additionally, it exhibited moderate toxicity against brine shrimp nauplii with LD50 values of 321 µg/ml and showed antibacterial activity against Escherichia coli and Shigella dysenteriae. In vitro experiments demonstrated that AML suppressed the proliferation of mice Ehrlich ascites carcinoma (EAC) cells by 35 % and human lung cancer (A549) cells by 40 % at 512 µg/ml concentration. In vivo experiments involved intraperitoneal injection of AML in EAC-bearing mice for five consecutive days at doses of 2.5 and 5.0 mg/kg/day, and the results indicated that AML inhibited EAC cell growth by 37 % and 54 %, respectively. Finally, it can be concluded that AML can be used for further anticancer and antibacterial studies.


Assuntos
Antibacterianos , Carcinoma de Ehrlich , Animais , Camundongos , Humanos , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia , Antibacterianos/farmacologia , Antibacterianos/química , Lectinas de Plantas/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Rizoma/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Células A549 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Mar Drugs ; 22(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38921580

RESUMO

SeviL, a galactoside-binding lectin previously isolated from the mussel Mytilisepta virgata, was demonstrated to trigger apoptosis in HeLa ovarian cancer cells. Here, we show that this lectin can promote the polarization of macrophage cell lines toward an M1 functional phenotype at low concentrations. The administration of SeviL to monocyte and basophil cell lines reduced their growth in a dose-dependent manner. However, low lectin concentrations induced proliferation in the RAW264.7 macrophage cell line, which was supported by the significant up-regulation of TOM22, a component of the mitochondrial outer membrane. Furthermore, the morphology of lectin-treated macrophage cells markedly changed, shifting from a spherical to an elongated shape. The ability of SeviL to induce the polarization of RAW264.7 cells to M1 macrophages at low concentrations is supported by the secretion of proinflammatory cytokines and chemokines, as well as by the enhancement in the expression of IL-6- and TNF-α-encoding mRNAs, both of which encode inflammatory molecular markers. Moreover, we also observed a number of accessory molecular alterations, such as the activation of MAP kinases and the JAK/STAT pathway and the phosphorylation of platelet-derived growth factor receptor-α, which altogether support the functional reprogramming of RAW264.7 following SeviL treatment. These results indicate that this mussel ß-trefoil lectin has a concentration-dependent multifunctional role in regulating cell proliferation, phenotype, and death in macrophages, suggesting its possible involvement in regulating hemocyte activity in vivo.


Assuntos
Bivalves , Lectinas , Macrófagos , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Lectinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Citocinas/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos
3.
Molecules ; 29(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893406

RESUMO

A Cucurbita phloem exudate lectin (CPL) from summer squash (Cucurbita pepo) fruits was isolated and its sugar-binding properties and biological activities were studied. The lectin was purified by affinity chromatography and the hemagglutination assay method was used to determine its pH, heat stability, metal-dependency and sugar specificity. Antimicrobial and anticancer activities were also studied by disc diffusion assays and in vivo and in vitro methods. The molecular weight of CPL was 30 ± 1 KDa and it was stable at different pH (5.0 to 9.0) and temperatures (30 to 60 °C). CPL recovered its hemagglutination activity in the presence of Ca2+. 4-nitrophenyl-α-D-glucopyranoside, lactose, rhamnose and N-acetyl-D-glucosamine strongly inhibited the activity. With an LC50 value of 265 µg/mL, CPL was moderately toxic and exhibited bacteriostatic, bactericidal and antibiofilm activities against different pathogenic bacteria. It also exhibited marked antifungal activity against Aspergillus niger and agglutinated A. flavus spores. In vivo antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice was observed when CPL exerted 36.44% and 66.66% growth inhibition at doses of 3.0 mg/kg/day and 6.0 mg/kg/day, respectively. A 12-day treatment by CPL could reverse their RBC and WBC counts as well as restore the hemoglobin percentage to normal levels. The MTT assay of CPL performed against human breast (MCF-7) and lung (A-549) cancer cell lines showed 29.53% and 18.30% of inhibitory activity at concentrations of 128 and 256 µg/mL, respectively.


Assuntos
Anti-Infecciosos , Cucurbita , Lectinas de Plantas , Cucurbita/química , Animais , Lectinas de Plantas/farmacologia , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Camundongos , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia
4.
Saudi Pharm J ; 32(6): 102093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38737807

RESUMO

Carbohydrate analogs are an important, well-established class of clinically useful medicinal agents that exhibit potent antimicrobial activity. Thus, we explored the various therapeutic potential of methyl α-D-mannopyranoside (MαDM) analogs, including their ability to synthesize and assess their antibacterial, antifungal, and anticancer properties; additionally, molecular docking, molecular dynamics simulation, and ADMET analysis were performed. The structure of the synthesized MαDM analogs was ascertained by spectroscopic techniques and physicochemical and elemental analysis. In vitro antimicrobial activity was assessed and revealed significant inhibitory effects, particularly against gram-negative bacteria along with the prediction of activity spectra for substances (PASS). Concurrently, MαDM analogs showed good results against antifungal pathogens and exhibited promising anticancer effects in vitro, demonstrating dose-dependent cytotoxicity against Ehrlich ascites carcinoma (EAC) cancer cells while sparing normal cells from compound 5, with an IC50 of 4511.65 µg/mL according to the MTT colorimetric assay. A structure-activity relationship (SAR) study revealed that hexose combined with the acyl chains of decanoyl (C-10) and benzenesulfonyl (C6H5SO2-) had synergistic effects on the bacteria and fungi that were examined. Molecular docking was performed against the Escherichia coli (6KZV) and Candida albicans (1EAG) proteins to acquire insights into the molecular interactions underlying the observed biological activities. The docking results were further supported by 100 ns molecular dynamics simulations, which provided a dynamic view of the stability and flexibility of complexes involving MαDM and its targets. In addition, ADMET analysis was used to evaluate the toxicological and pharmacokinetic profiles. Owing to their promising drug-like properties, these MαDM analogs exhibit potential as prospective therapeutic candidates for future development.

5.
Medicina (Kaunas) ; 59(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374310

RESUMO

Nucleoside analogs are frequently used in the control of viral infections and neoplastic diseases. However, relatively few studies have shown that nucleoside analogs have antibacterial and antifungal activities. In this study, a fused pyrimidine molecule, uridine, was modified with various aliphatic chains and aromatic groups to produce new derivatives as antimicrobial agents. All newly synthesized uridine derivatives were analyzed by spectral (NMR, FTIR, mass spectrometry), elemental, and physicochemical analyses. Prediction of activity spectra for substances (PASS) and in vitro biological evaluation against bacteria and fungi indicated promising antimicrobial capability of these uridine derivatives. The tested compounds were more effective against fungal phytopathogens than bacterial strains, as determined by their in vitro antimicrobial activity. Cytotoxicity testing indicated that the compounds were less toxic. In addition, antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells was investigated, and compound 6 (2',3'-di-O-cinnamoyl-5'-O-palmitoyluridine) demonstrated promising anticancer activity. Their molecular docking against Escherichia coli (1RXF) and Salmonella typhi (3000) revealed notable binding affinities and nonbonding interactions in support of this finding. Stable conformation and binding patterns/energy were found in a stimulating 400 ns molecular dynamics (MD) simulation. Structure-activity relationship (SAR) investigation indicated that acyl chains, CH3(CH2)10CO-, (C6H5)3C-, and C2H5C6H4CO-, combined with deoxyribose, were most effective against the tested bacterial and fungal pathogens. Pharmacokinetic predictions were examined to determine their ADMET characteristics, and the results in silico were intriguing. Finally, the synthesized uridine derivatives demonstrated increased medicinal activity and high potential for future antimicrobial/anticancer agent(s).


Assuntos
Anti-Infecciosos , Antineoplásicos , Humanos , Estrutura Molecular , Uridina/farmacologia , Uridina/uso terapêutico , Simulação de Acoplamento Molecular , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
Glycoconj J ; 39(2): 261-290, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35037163

RESUMO

Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl ß-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6-O-acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6-O-MGP esters were further modified into 2,3,4-tri-O-acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters' shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders' binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC6H4CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.


Assuntos
Anti-Infecciosos , COVID-19 , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antivirais/química , Antivirais/farmacologia , Ésteres/farmacologia , Galactose , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases , SARS-CoV-2
7.
Mar Drugs ; 19(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356819

RESUMO

In recent years, there has been considerable interest in lectins from marine invertebrates. In this study, the biological activities of a lectin protein isolated from the eggs of Sea hare (Aplysia kurodai) were evaluated. The 40 kDa Aplysia kurodai egg lectin (or AKL-40) binds to D-galacturonic acid and D-galactose sugars similar to previously purified isotypes with various molecular weights (32/30 and 16 kDa). The N-terminal sequence of AKL-40 was similar to other sea hare egg lectins. The lectin was shown to be moderately toxic to brine shrimp nauplii, with an LC50 value of 63.63 µg/mL. It agglutinated Ehrlich ascites carcinoma cells and reduced their growth, up to 58.3% in vivo when injected into Swiss albino mice at a rate of 2 mg/kg/day. The morphology of these cells apparently changed due to AKL-40, while the expression of apoptosis-related genes (p53, Bax, and Bcl-XL) suggested a possible apoptotic pathway of cell death. AKL-40 also inhibited the growth of human erythroleukemia cells, probably via activating the MAPK/ERK pathway, but did not affect human B-lymphoma cells (Raji) or rat basophilic leukemia cells (RBL-1). In vitro, lectin suppressed the growth of Ehrlich ascites carcinoma and U937 cells by 37.9% and 31.8%, respectively. Along with strong antifungal activity against Talaromyces verruculosus, AKL showed antibacterial activity against Staphylococcus aureus, Shigella sonnei, and Bacillus cereus whereas the growth of Escherichia coli was not affected by the lectin. This study explores the antiproliferative and antimicrobial potentials of AKL as well as its involvement in embryo defense of sea hare.


Assuntos
Antibacterianos/farmacologia , Aplysia , Lectinas/farmacologia , Animais , Organismos Aquáticos , Ovos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
8.
Molecules ; 26(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34443386

RESUMO

Lectins facilitate cell-cell contact and are critical in many cellular processes. Studying lectins may help us understand the mechanisms underlying tissue regeneration. We investigated the localization of an R-type lectin in a marine annelid (Perinereis sp.) with remarkable tissue regeneration abilities. Perinereis nuntia lectin (PnL), a galactose-binding lectin with repeating Gln-X-Trp motifs, is derived from the ricin B-chain. An antiserum was raised against PnL to specifically detect a 32-kDa lectin in the crude extracts from homogenized lugworms. The antiserum detected PnL in the epidermis, setae, oblique muscle, acicula, nerve cord, and nephridium of the annelid. Some of these tissues and organs also produced Galactose (Gal) or N-acetylgalactosamine (GalNAc), which was detected by fluorescent-labeled plant lectin. These results indicated that the PnL was produced in the tissues originating from the endoderm, mesoderm, and ectoderm. Besides, the localizing pattern of PnL partially merged with the binding pattern of a fluorescent-labeled mushroom lectin that binds to Gal and GalNAc. It suggested that PnL co-localized with galactose-containing glycans in Annelid tissue; this might be the reason PnL needed to be extracted with haptenic sugar, such as d-galactose, in the buffer. Furthermore, we found that a fluorescein isothiocyanate-labeled Gal/GalNAc-binding mushroom lectin binding pattern in the annelid tissue overlapped with the localizing pattern of PnL. These findings suggest that lectin functions by interacting with Gal-containing glycoconjugates in the tissues.


Assuntos
Anelídeos/metabolismo , Organismos Aquáticos/metabolismo , Lectinas/metabolismo , Animais , Misturas Complexas , Ligantes , Polissacarídeos/metabolismo
9.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834107

RESUMO

A series of methyl ß-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich's ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Galactose/análogos & derivados , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacocinética , Antifúngicos/química , Antifúngicos/farmacocinética , Antifúngicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antivirais/síntese química , Antivirais/química , Antivirais/farmacocinética , Antivirais/farmacologia , Linhagem Celular Tumoral , Proteases 3C de Coronavírus/química , Galactose/química , Galactose/farmacocinética , Galactose/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/enzimologia , Eletricidade Estática , Termodinâmica , Tratamento Farmacológico da COVID-19
10.
Mar Drugs ; 17(2)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823584

RESUMO

We identified a lectin (carbohydrate-binding protein) belonging to the complement 1q(C1q) family in the feather star Anneissia japonica (a crinoid pertaining to the phylum Echinodermata). The combination of Edman degradation and bioinformatics sequence analysis characterized the primary structure of this novel lectin, named OXYL, as a secreted 158 amino acid-long globular head (sgh)C1q domain containing (C1qDC) protein. Comparative genomics analyses revealed that OXYL pertains to a family of intronless genes found with several paralogous copies in different crinoid species. Immunohistochemistry assays identified the tissues surrounding coelomic cavities and the arms as the main sites of production of OXYL. Glycan array confirmed that this lectin could quantitatively bind to type-2 N-acetyllactosamine (LacNAc: Galß1-4GlcNAc), but not to type-1 LacNAc (Galß1-3GlcNAc). Although OXYL displayed agglutinating activity towards Pseudomonas aeruginosa, it had no effect on bacterial growth. On the other hand, it showed a significant anti-biofilm activity. We provide evidence that OXYL can adhere to the surface of human cancer cell lines BT-474, MCF-7, and T47D, with no cytotoxic effect. In BT-474 cells, OXYL led to a moderate activation of the p38 kinase in the MAPK signaling pathway, without affecting the activity of caspase-3. Bacterial agglutination, anti-biofilm activity, cell adhesion, and p38 activation were all suppressed by co-presence of LacNAc. This is the first report on a type-2 LacNAc-specific lectin characterized by a C1q structural fold.


Assuntos
Equinodermos/química , Lectinas/farmacologia , Aglutinação/efeitos dos fármacos , Sequência de Aminoácidos , Amino Açúcares/química , Amino Açúcares/metabolismo , Animais , Sequência de Bases , Biofilmes/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Mar Drugs ; 17(9)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466257

RESUMO

MytiLec-1, a 17 kDa lectin with ß-trefoil folding that was isolated from the Mediterranean mussel (Mytilus galloprovincialis) bound to the disaccharide melibiose, Galα(1,6) Glc, and the trisaccharide globotriose, Galα(1,4) Galß(1,4) Glc. Toxicity of the lectin was found to be low with an LC50 value of 384.53 µg/mL, determined using the Artemia nauplii lethality assay. A fluorescence assay was carried out to evaluate the glycan-dependent binding of MytiLec-1 to Artemia nauplii. The lectin strongly agglutinated Ehrlich ascites carcinoma (EAC) cells cultured in vivo in Swiss albino mice. When injected intraperitoneally to the mice at doses of 1.0 mg/kg/day and 2.0 mg/kg/day for five consecutive days, MytiLec-1 inhibited 27.62% and 48.57% of cancer cell growth, respectively. Antiproliferative activity of the lectin against U937 and HeLa cells was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in vitro in RPMI-1640 medium. MytiLec-1 internalized into U937 cells and 50 µg/mL of the lectin inhibited their growth of to 62.70% whereas 53.59% cell growth inhibition was observed against EAC cells when incubated for 24 h. Cell morphological study and expression of apoptosis-related genes (p53, Bax, Bcl-X, and NF-κB) showed that the lectin possibly triggered apoptosis in these cells.


Assuntos
Produtos Biológicos/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Dissacarídeos/farmacologia , Lectinas/farmacologia , Mytilus/química , Trissacarídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Artemia/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Carcinoma de Ehrlich/patologia , Proliferação de Células/efeitos dos fármacos , Dissacarídeos/química , Dissacarídeos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Injeções Intraperitoneais , Lectinas/química , Lectinas/uso terapêutico , Melibiose/química , Camundongos , Testes de Toxicidade , Trissacarídeos/química , Trissacarídeos/uso terapêutico , Células U937
12.
BMC Genomics ; 18(1): 590, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28789640

RESUMO

BACKGROUND: Mytilisepta virgata is a marine mussel commonly found along the coasts of Japan. Although this species has been the subject of occasional studies concerning its ecological role, growth and reproduction, it has been so far almost completely neglected from a genetic and molecular point of view. In the present study we present a high quality de novo assembled transcriptome of the Japanese purplish mussel, which represents the first publicly available collection of expressed sequences for this species. RESULTS: The assembled transcriptome comprises almost 50,000 contigs, with a N50 statistics of ~1 kilobase and a high estimated completeness based on the rate of BUSCOs identified, standing as one of the most exhaustive sequence resources available for mytiloid bivalves to date. Overall this data, accompanied by gene expression profiles from gills, digestive gland, mantle rim, foot and posterior adductor muscle, presents an accurate snapshot of the great functional specialization of these five tissues in adult mussels. CONCLUSIONS: We highlight that one of the most striking features of the M. virgata transcriptome is the high abundance and diversification of lectin-like transcripts, which pertain to different gene families and appear to be expressed in particular in the digestive gland and in the gills. Therefore, these two tissues might be selected as preferential targets for the isolation of molecules with interesting carbohydrate-binding properties. In addition, by molecular phylogenomics, we provide solid evidence in support of the classification of M. virgata within the Brachidontinae subfamily. This result is in agreement with the previously proposed hypothesis that the morphological features traditionally used to group Mytilisepta spp. and Septifer spp. within the same clade are inappropriate due to homoplasy.


Assuntos
Perfilação da Expressão Gênica , Mytilus/genética , Mytilus/fisiologia , Animais , Lectinas/genética , Anotação de Sequência Molecular , Mytilus/anatomia & histologia , Especificidade de Órgãos , Filogenia
13.
Mar Drugs ; 14(5)2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187419

RESUMO

MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a ß-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic "mytilectin family" in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5' end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5'UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3'UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels.


Assuntos
Bivalves/genética , DNA Complementar/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lectinas/genética , Mytilus/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bivalves/imunologia , Éxons/genética , Genoma/genética , Imunidade Inata/imunologia , Lectinas/imunologia , Mytilus/imunologia , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Alinhamento de Sequência
14.
Toxicol Ind Health ; 32(6): 1106-13, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25216801

RESUMO

This study presents an overview of the existence and effects of six heavy metals, chromium (Cr), lead (Pb), cadmium (Cd), mercury (Hg), manganese (Mn), and aluminum (Al), in tannery effluents released to the Buriganga River in Dhaka, Bangladesh. The pollutants were found in three different sources, such as effluents from tanneries, contaminated river water and three species of fish-climbing perch (Anabas testudineus), spotted snakehead (Channa punctata), and Black tilapia (Oreochromis mossambicus) caught from the river. Tannery effluents, water, and fish samples were collected from three different factories, five sample stations, and three different harvesting points, respectively. Effluents from all three factories contained significant amounts of heavy metals, especially Cr (374.19 ppm in average), whereas lesser amounts were found in the tissues of the three fish species studied. The trends in tissue elemental concentrations of fish were Cr > Pb > Al > Hg > Mn > Cd. In most cases (Cr, Cd, Mn, and Al), heavy metal concentrations were found to be greater in climbing perch than in Black tilapia and spotted snakehead. Although the river water contained high concentrations of harmful heavy metals, the fish species under study had concentrations well below the permissible Food and Agriculture Organization/World Health Organization levels for those metals and seemed to be safe for human consumption.


Assuntos
Monitoramento Ambiental , Resíduos Industriais/análise , Chumbo/análise , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise , Alumínio/análise , Animais , Bangladesh , Cádmio/análise , Cromo/análise , Peixes , Manganês/análise , Mercúrio/análise , Curtume
15.
Mar Drugs ; 13(12): 7377-89, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26694420

RESUMO

MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis); shows strong binding affinity to globotriose (Gb3: Galα1-4Galß1-4Glc). MytiLec revealed ß-trefoil folding as also found in the ricin B-subunit type (R-type) lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitt's lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK) and stress-activated (p38 kinase and JNK) Mitogen-activated protein kinases (MAPK) pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF)-α (a ligand of death receptor-dependent apoptosis) and activation of mitochondria-controlling caspase-9 (initiator caspase) and caspase-3 (activator caspase). Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt's lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation) based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface.


Assuntos
Apoptose/efeitos dos fármacos , Linfoma de Burkitt/tratamento farmacológico , Lectinas/farmacologia , Animais , Linfoma de Burkitt/patologia , Butadienos/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Humanos , Células K562 , Lectinas/isolamento & purificação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mytilus/metabolismo , Nitrilas/farmacologia , Trissacarídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Molecules ; 19(9): 13990-4003, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25197935

RESUMO

A specific galactose-binding lectin was shown to inhibit the hemolytic effect of streptolysin O (SLO), an exotoxin produced by Streptococcus pyogenes. Commercially available lectins that recognize N-acetyllactosamine (ECA), T-antigen (PNA), and Tn-antigen (ABA) agglutinated rabbit erythrocytes, but had no effect on SLO-induced hemolysis. In contrast, SLO-induced hemolysis was inhibited by AKL, a lectin purified from sea hare (Aplysia kurodai) eggs that recognizes α-galactoside oligosaccharides. This inhibitory effect was blocked by the co-presence of d-galactose, which binds to AKL. A possible explanation for these findings is that cholesterol-enriched microdomains containing glycosphingolipids in the erythrocyte membrane become occupied by tightly stacked lectin molecules, blocking the interaction between cholesterol and SLO that would otherwise result in penetration of the membrane. Growth of S. pyogenes was inhibited by lectins from a marine invertebrate (AKL) and a mushroom (ABA), but was promoted by a plant lectin (ECA). Both these inhibitory and promoting effects were blocked by co-presence of galactose in the culture medium. Our findings demonstrate the importance of glycans and lectins in regulating mechanisms of toxicity, creation of pores in the target cell membrane, and bacterial growth.


Assuntos
Aplysia/química , Eritrócitos/fisiologia , Galectinas/química , Hemólise/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Eritrócitos/efeitos dos fármacos , Galectinas/isolamento & purificação , Galectinas/farmacologia , Hemolíticos/farmacologia , Testes de Sensibilidade Microbiana , Óvulo/química , Coelhos , Streptococcus pyogenes/efeitos dos fármacos , Estreptolisinas/farmacologia
17.
Fish Physiol Biochem ; 40(5): 1559-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24861899

RESUMO

Rhamnose-binding lectin (RBL) is one of the animal lectin categories which take part in the innate immune responses of fish. Osmerus lanceolatus lectin (OLL) from shishamo smelt eggs is an RBL composed of two tandem-repeated domains, both of which are considered to be a carbohydrate-recognition domain. SAL, catfish (Silurus asotus) egg RBL composed of three domains, binds to Burkitt's lymphoma Raji cells through globotriaosylceramide (Gb3) carbohydrate chain and to reduce cell size and growth by altering membrane composition without causing cell death. In this experiment, we tried to compare the binding effects of these two RBLs on Raji cells. Flow cytometric and fluorescence microscopic analyses revealed that OLL also directly bound to and shrunk Raji cells with ten times less reactivity than SAL but reduced cell growth with decreasing cell viability. Anti-Gb3 antibody completely blocked the binding of SAL to Raji cells but not that of OLL. In addition, the direct bindings of OLL and SAL to Raji cells were comparably inhibited by melibiose, but lactose was more effective inhibitor for the binding of OLL than that of SAL. These results suggest that OLL has slightly different cell-binding property compared with SAL and binds not only to Gb3 but also to the other carbohydrate receptor-bearing ß-galactoside chains. The quantitative RT-PCR analysis revealed that SAL induced the expression of TNF-α but not of IFN-γ, IL-1ß, and IL-10. Thus, SAL-induced cytostatic effect on Raji cells might be partially caused by TNF-α-mediated signaling pathway.


Assuntos
Linfoma de Burkitt/imunologia , Peixes-Gato/imunologia , Citocinas/metabolismo , Proteínas de Peixes/imunologia , Lectinas/imunologia , Osmeriformes/imunologia , Transdução de Sinais/imunologia , Análise de Variância , Animais , Western Blotting , Linfoma de Burkitt/metabolismo , Peixes-Gato/metabolismo , Linhagem Celular Tumoral , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Proteínas de Peixes/metabolismo , Citometria de Fluxo , Humanos , Lectinas/metabolismo , Melibiose , Microscopia de Fluorescência , Osmeriformes/metabolismo , Ficoeritrina , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Triexosilceramidas/imunologia , Triexosilceramidas/metabolismo
18.
Indian J Biochem Biophys ; 51(2): 142-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24980018

RESUMO

A new chitin-binding lectin was purified from a Bangladeshi cultivar 'Deshi' of potato (Solanum tuberosum L.) through anion-exchange and affinity chromatographies using a chitin column. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular mass of the lectin as 20,000 Daltons. This molecular mass was almost half of the molecular masses of chitin-binding lectins derived from other potatoes. The lectin showed both bactericidal and growth-inhibiting activities against Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli, Salmonella enteritidis and Shigella boydii) pathogenic bacteria. It also showed antifungal activity against Rhizopus spp., Penicillium spp. and Aspergillus niger. Biofilm produced by the bacterium Pseudomonas aeruginosa was dose-dependently reduced by 5-20% in 24 h after administration of the lectin, which was attributed to the glycan-binding property of the lectin having affinity to GlcNAc polymers. It was the first observation that any potato lectin prevented biofilm formation by P. aeruginosa and, therefore, could have possible applications in clinical microbiology and biomedical science.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Quitina/metabolismo , Lectinas de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Solanum tuberosum/metabolismo , Lectinas de Plantas/isolamento & purificação , Pseudomonas aeruginosa/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento
19.
Heliyon ; 10(2): e24592, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312555

RESUMO

A seed lectin from Manilkara zapota (MZSL) was purified using ammonium sulphate precipitation and affinity chromatography. Hemagglutination activity, neutral sugar content and physicochemical properties of the lectin were determined and toxicity was checked by brine shrimp toxicity assay. Antimicrobial, antioxidant as well as in vitro anticancer activities of MZSL were also evaluated. Our findings showed the molecular weight of MZSL to be 33.0 ± 1 kDa. Minimum hemagglutination concentration of the lectin was 15.625 µg/ml. With a neutral sugar content of 6.32 %, the lectin was fully active at a temperature range of 30-50 °C and pH 7.0-8.0 and it was mildly toxic with an LC50 value of 107.93 µg/ml. The lectin demonstrated bacteriostatic activity against gram-positive bacteria in contrast to gram-negative bacteria at a concentration of 31.25 µg/ml, agglutinated Staphylococcus aureus and Shigella dysenteriae and exerted fungistatic activity against Aspergillus niger. MZSL dose-dependently reduced the formation of biofilm by E. coli. DPPH assay confirmed its antioxidant activity with an IC50 value of 96.42 µg/ml. MZSL showed 21.64 % growth inhibition against Ehrlich ascites carcinoma (EAC) cells at 80 µg/ml whereas its antiproliferative potential against MCF-7 and A-549 cancer cell lines became evident with IC50 values of 70.66 µg/ml and 107.64 µg/ml, respectively.

20.
Anticancer Agents Med Chem ; 24(3): 193-202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38037833

RESUMO

BACKGROUND: Lectins are carbohydrate-binding proteins with various pharmacological activities, such as antimicrobial, antidiabetic, antioxidant, and anticancer. Punica granatum fruit extract has traditional uses, however, the anti-cancer activity of purified lectin isolated from P. granatum pulp is yet to be reported. OBJECTIVE: The goals of this study are purification, characterization of the lectin from P. granatum, and examination of the purified lectin's anticancer potential. METHODS: Diethylaminoethyl (DEAE) ion-exchange chromatography was used to purify the lectin, and SDSPAGE was used to check the purity and homogeneity of the lectin. Spectrometric and chemical analysis were used to characterize the lectin. The anticancer activity of the lectin was examined using in vivo and in vitro functional assays. RESULTS: A lectin, designated as PgL of 28.0 ± 1.0 kDa molecular mass, was isolated and purified from the pulps of P. granatum and the lectin contains 40% sugar. Also, it is a bivalent ion-dependent lectin and lost its 75% activity in the presence of urea (8M). The lectin agglutinated blood cells of humans and rats, and sugar molecules such as 4-nitrophenyl-α-D-manopyranoside and 2- nitrophenyl -ß- D-glucopyranoside inhibited PgL's hemagglutination activity. At pH ranges of 6.0-8.0 and temperature ranges of 30°C -80°C, PgL exhibited the highest agglutination activity. In vitro MTT assay showed that PgL inhibited Ehrlich ascites carcinoma (EAC) cell growth in a dose-dependent manner. PgL exhibited 39 % and 58.52 % growth inhibition of EAC cells in the mice model at 1.5 and 3.0 mg/kg/day (i.p.), respectively. In addition, PgL significantly increased the survival time (32.0 % and 49.3 %) of EAC-bearing mice at 1.5 and 3.0 mg/kg/day doses (i.p.), respectively, in comparison to untreated EAC-bearing animals (p < 0.01). Also, PgL reduced the tumor weight of EAC-bearing mice (66.6 versus 39.13%; p < 0.01) at the dose of 3.0 mg/kg/day treatment. Furthermore, supplementation of PgL restored the haematological parameters toward normal levels deteriorated in EAC-bearing animals by the toxicity of EAC cells. CONCLUSION: The results indicated that the purified lectin has anticancer activity and has the potential to be developed as an effective chemotherapy agent.


Assuntos
Carcinoma de Ehrlich , Punica granatum , Humanos , Camundongos , Ratos , Animais , Lectinas/farmacologia , Apoptose , Lectinas de Plantas/farmacologia , Lectinas de Plantas/química , Proliferação de Células , Ascite , Linhagem Celular Tumoral , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia , Açúcares/farmacologia , Açúcares/uso terapêutico , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA