Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558121

RESUMO

Cataracts are an ailment representing the leading cause of blindness in the world. The pathogenesis of cataracts is not clear, and there is no effective treatment. An increasing amount of evidence shows that oxidative stress and autophagy in lens epithelial cells play a key role in the occurrence and development of cataracts. Buddleja officinalis Maxim flavonoids (BMF) are natural antioxidants and regulators that present anti-inflammatory and anti-tumor effects, among others. In this study, we optimized the extraction method of BMFs and detected three of their main active monomers (luteolin, apigenin, and acacetin). In addition, a model of oxidative damage model using rabbit lens epithelial cells induced by hydrogen peroxide (H2O2). By detecting the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and OH (OH), the expression of autophagosomes and autolysosomes were observed after MRFP-GFP-LC3 adenovirus was introduced into the cells. Western blotting was used to detect the expression of Beclin-1 and P62. Our research results showed that the optimal extraction parameters to obtain the highest yield of total flavonoids were a liquid−solid ratio of 1:31 g/mL, an ethanol volume fraction of 67%, an extraction time of 2.6 h, and an extraction temperature of 58 °C. Moreover, the content of luteolin was 690.85 ppb, that of apigenin was 114.91 ppb, and the content of acacetin was 5.617 ppb. After oxidative damage was induced by H2O2, the cell survival rate decreased significantly. BMFs could increase the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decrease the levels of malondialdehyde (MDA) and OH (OH). After the MRFP-GFP-LC3 virus was introduced into rabbit lens epithelial cells and detecting the expression of P62 and Beclin-1, we found that the intervention of BMF could promote the binding of autophagosomes to lysosomes. Compared with the model group, the level of P62 in the low-, middle-, and high-dose groups of BMF was significantly down-regulated, the level of Beclin-1 was significantly increased, and the difference was statistically significant (p < 0.05). In other words, the optimized extraction method was better than others, and the purified BMF contained three main active monomers (luteolin, apigenin, and acacetin). In addition, BMFs could ameliorate the H2O2-induced oxidative damage to rabbit lens cells by promoting autophagy and regulating the level of antioxidation.


Assuntos
Buddleja , Catarata , Animais , Coelhos , Peróxido de Hidrogênio/farmacologia , Flavonoides/farmacologia , Proteína Beclina-1/metabolismo , Apigenina/farmacologia , Luteolina/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Autofagia , Malondialdeído/metabolismo , Glutationa Peroxidase/metabolismo
2.
Mymensingh Med J ; 23(2): 401-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24858176

RESUMO

Uterine prolapse is commonly seen in the geriatric age group. Congenital vaginouterine prolapse is a rare condition occurring in neonates and is usually associated with spinal cord malformations in about 85% of cases. Several modalities of treatment have been described for neonatal uterine prolapse. Conservative treatment in the form of simple digital reposition, use of pessary or other self-retaining device is usually sufficient to treat this condition, which is self-limiting and regressive. Here we report our first case of neonatal uterine prolapse, managed successfully with simple digital reposition.


Assuntos
Prolapso Uterino/congênito , Prolapso Uterino/terapia , Feminino , Humanos , Recém-Nascido , Prolapso Uterino/diagnóstico
4.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718773

RESUMO

The Z-scan technique is a nonlinear optical method that has found applications in characterizing various materials, particularly those exhibiting nonlinear optical response (NLOR). This study applies the continuous wave (CW) Z-scan technique to examine the NLOR in terms of the nonlinear optical phase shifts(ΔΦ0) exhibited by the ccfDNA extracted from blood plasma samples collected from a group constituting 30 cancer-diagnosed patients and another group constituting 30 non-diagnosed individuals. The cancer group exhibited significantly higherΔΦ0versus incident power slopes compared to the non-cancer group (0.34 versus 0.12) providing a clear distinction between the two groups. The receiver operating characteristic (ROC) curve analysis of the results indicates a clear separation between cancer and non-cancer groups, along with a 94% accuracy rate of the data. The Z-scan results are corroborated by spectrophotometric analysis, revealing a consistent trend in the concentration values of ccfDNA samples extracted from both cancerous and non-cancerous samples, measuring 3.24 and 1.41 respectively. Additionally, more sensitive fluorometric analyses of the respective samples demonstrate significantly higher concentrations of ccfDNA in the cancer group, further affirming the correlation with the Z-scan results. The study suggests that the Z-scan technique holds promise as an effective method for cancer detection, potentially contributing to improved oncology diagnosis and prognosis in the future.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , Neoplasias , Curva ROC , Humanos , Biomarcadores Tumorais/sangue , Neoplasias/sangue , Ácidos Nucleicos Livres/sangue , Feminino , Masculino , Espectrofotometria/métodos
5.
Sci Rep ; 13(1): 5903, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041199

RESUMO

Multidimensional query processing is an important access pattern for multidimensional scientific data. We propose an in-memory multidimensional query processing algorithm for dense data using a higher-dimensional array. We developed a new array system namely a Converted two-dimensional Array (C2A) of a multidimensional array of dimension n ([Formula: see text]) where the n dimensions are transformed into 2 dimensions. Using the C2A, we design and analyze less complex algorithms that show improve performance for data locality and cache miss rate. Therefore, improved performance for data retrieval is achieved. We demonstrate algorithms for single key and range key queries for both Traditional Multidimensional Array(TMA) and C2A. We also compare the performance of both schemes. The cost of index computation gets high when the number of dimensions increases in a TMA but the proposed C2A based algorithm shows less computation cost. The cache miss rate is also lower for in C2A based algorithm than TMA based algorithm. Theoretical and experimental results show that the performance of C2A based algorithm outperforms the TMA-based algorithms.

6.
Food Chem X ; 18: 100691, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37179979

RESUMO

Antioxidant activity and volatiles of kiwifruit wine with different flesh colors were investigated in this study. Green (Guichang and Xuxiang), red (Donghong and Hongyang), and yellow (Jinyan) kiwifruits were analyzed to determine their alcohol content, phenolic profiles, antioxidant activity, and aroma composition. The results showed that Hongyang and Donghong wines had higher antioxidant activity and content of antioxidant substances. Hongyang wine possessed the most abundance of polyphenolic compounds, chlorogenic acid and catechins were the main polyphenols of kiwi wines. The 101 aromatic components were detected, Xuxiang wine possessed 64 aromatic compounds, Donghong and Hongyang wines had the higher esters compositions, 79.87%, and 78.0% respectively. From PCA (Principal Component Analysis), the volatile substances of kiwi wine with the same flesh color were similar. Five kinds of kiwi wines shared 32 kinds of volatile compounds, these compounds may be the core volatiles in kiwi wine. Therefore, the color of kiwi flesh can impact wine flavor, with Hongyang and Donghong kiwis owning red flesh being the most suitable for producing kiwi wine which would be a new milestone to the wine manufactures.

7.
ACS Appl Bio Mater ; 6(12): 5169-5192, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38036466

RESUMO

The biopolymer lignin, which is heterogeneous and abundant, is usually present in plant cell walls and gives them rigidity and strength. As a byproduct of the wood, paper, and pulp manufacturing industry, lignin ranks as the second most prevalent biopolymer worldwide, following cellulose. This review paper explores the extraction, modification, and prospective applications of lignin in various industries, including the enhancement of thermosetting and thermoplastic polymers, biomedical applications such as vanillin production, fuel development, carbon fiber composites, and the creation of nanomaterials for food packaging and drug delivery. The structural characteristics of lignin remain undefined due to its origin, separation, and fragmentation processes. This comprehensive overview encompasses state-of-the-art techniques, potential applications, diverse extraction methods, chemical modifications, carbon fiber utilization, and the extraction of vanillin. Moreover, the review focuses on the utilization of lignin-modified polymer blends across multiple manufacturing sectors, providing insights into the advantages and limitations of this innovative approach for the development of environmentally friendly materials.


Assuntos
Lignina , Polímeros , Lignina/química , Polímeros/química , Fibra de Carbono , Biopolímeros
8.
Front Nutr ; 10: 1078868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824172

RESUMO

Grifola frondosa is an edible medicinal mushroom that has been proven to have a variety of health benefits. The main active ingredients of this mushroom are polysaccharides. In this study, ultrasonic-assisted extraction was used to obtain crude Grifola frondosa polysaccharides (GFPs). Then, purified GFP was obtained after purification. The optimum extraction conditions were an extraction time of 71 min, an extraction temperature of 90°C in a solid-to-liquid ratio of 1:37 g/mL, and an ultrasonic power of 500 W. GFP was purified using DEAE-52 and Sephadex G-100. The structural characterization of GFP was performed using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ion chromatography (IC), and ultraviolet (UV) visible photometry. The morphology of GFP was analyzed by scanning electron microscopy (SEM), thermogravimetric differential scanning calorimetry (TG-DSC), and Congo red testing. In addition, the administration of GFP in oxazolone (OXZ)-induced ulcerative colitis (UC) in mice was found to prevent weight loss. Different doses of GFP (80, 160, and 320 mg/kg body weight) were used, and sulfapyridine (SASP) was used as a positive control (370 mg/kg body weight) for the treatment of OXZ-induced UC. After treatment, the mice were killed, and blood and colon tissue samples were collected. GFP was found to prevent decreases in colon length and the levels of leukocytes, platelets, and neutrophils in UC mice. Moreover, GFP also decreased the expression of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL)-1 ß], increased IL-10, and reduced colon injury in UC mice. The results showed that Under these conditions, the predicted polysaccharide yield was 21.72%, and the actual extraction rate was 21.13%. The polysaccharide composition (molar ratio) was composed of fucose (0.025), glucosamine hydrochloride (0.004), galactose (0.063), glucose (0.869), and mannose (0.038). GFP was also found to have a typical absorption peak, and the GFP extracted using the ultrasound-assisted extraction protocol was mainly ß-glucan. These results indicate that ultrasound-assisted extraction of GFP could reduce OXZ-induced intestinal inflammation as a promising candidate for the treatment of UC, with the potential for development as a food supplement to improve intestinal diseases.

9.
Front Bioeng Biotechnol ; 11: 1189640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662429

RESUMO

Genes involved in mycoremediation were identified by comparative genomics analysis in 10 armillarioid species and selected groups of white-rot Basidiomycota (14) and soft-rot Ascomycota (12) species to confine the distinctive bioremediation capabilities of the armillarioids. The genomes were explored using phylogenetic principal component analysis (pPCA), searching for genes already documented in a biocatalysis/biodegradation database. The results underlined a distinct, increased potential of aromatics-degrading genes/enzymes in armillarioids, with particular emphasis on a high copy number and diverse spectrum of benzoate 4-monooxygenase [EC:1.14.14.92] homologs. In addition, other enzymes involved in the degradation of various monocyclic aromatics were more abundant in the armillarioids than in the other white-rot basidiomycetes, and enzymes involved in the degradation of polycyclic aromatic hydrocarbons (PAHs) were more prevailing in armillarioids and other white-rot species than in soft-rot Ascomycetes. Transcriptome profiling of A. ostoyae and A. borealis isolates confirmed that several genes involved in the degradation of benzoates and other monocyclic aromatics were distinctively expressed in the wood-invading fungal mycelia. Data were consistent with armillarioid species offering a more powerful potential in degrading aromatics. Our results provide a reliable, practical solution for screening the likely fungal candidates for their full biodegradation potential, applicability, and possible specialization based on their genomics data.

10.
SN Comput Sci ; 3(1): 17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34723208

RESUMO

The COVID-19 pandemic creates a significant impact on everyone's life. One of the fundamental movements to cope with this challenge is identifying the COVID-19-affected patients as early as possible. In this paper, we classified COVID-19, Pneumonia, and Healthy cases from the chest X-ray images by applying the transfer learning approach on the pre-trained VGG-19 architecture. We use MongoDB as a database to store the original image and corresponding category. The analysis is performed on a public dataset of 3797 X-ray images, among them COVID-19 affected (1184 images), Pneumonia affected (1294 images), and Healthy (1319 images) (https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/version/3). This research gained an accuracy of 97.11%, average precision of 97%, and average Recall of 97% on the test dataset.

11.
Heliyon ; 8(12): e12322, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590481

RESUMO

The green and facile synthesis of metallic silver nanoparticles (AgNPs) is getting tremendous attention for exploring superior applications because of their small dimensions and shape. AgNPs are already proven materials for superior coloration, biocidal, thermal, UV-protection, and mechanical performance. Originally, some conventional chemical-based reducing agents were used to synthesize AgNPs, but these posed potential risks, especially for enhanced toxicity. This became a driving force to innovate plant-based sustainable and green metallic nanoparticles (NPs). Moreover, the synthesized NPs using plant-based derivatives could be tuned and regulated to achieve the required shape and size of the AgNPs. AgNPs synthesized from naturally derived materials are safe, economical, eco-friendly, facile, and convenient, which is also motivating researchers to find greener routes and viable options, utilizing various parts of plants like flowers, stems, heartwood, leaves and carbohydrates like chitosan to meet the demands. This article intends to provide a comprehensive review of all aspects of AgNP materials, including green synthesis methodology and mechanism, incorporation of advanced technologies, morphological and elemental study, functional properties (coloration, UV-protection, biocidal, thermal, and mechanical properties), marketing value, future prospects and application, especially for the last 20 years or more. The article also includes a SWOT (Strengths, weaknesses, opportunities, and threats) analysis regarding the use of AgNPs. This report would facilitate the industries and consumers associated with AgNP synthesis and application through fulfilling the demand for sustainable, feasible, and low-cost product manufacturing protocols and their future prospects.

12.
RSC Adv ; 11(18): 10548-10571, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423548

RESUMO

The coconut (Cocos nucifera) fruits are extensively grown in tropical countries. The use of coconut husk-derived coir fiber-reinforced biocomposites is on the rise nowadays due to the constantly increasing demand for sustainable, renewable, biodegradable, and recyclable materials. Generally, the coconut husk and shells are disposed of as waste materials; however, they can be utilized as prominent raw materials for environment-friendly biocomposite production. Coir fibers are strong and stiff, which are prerequisites for coir fiber-reinforced biocomposite materials. However, as a bio-based material, the produced biocomposites have various performance characteristics because of the inhomogeneous coir material characteristics. Coir materials are reinforced with different thermoplastic, thermosetting, and cement-based materials to produce biocomposites. Coir fiber-reinforced composites provide superior mechanical, thermal, and physical properties, which make them outstanding materials as compared to synthetic fiber-reinforced composites. However, the mechanical performances of coconut fiber-reinforced composites could be enhanced by pretreating the surfaces of coir fiber. This review provides an overview of coir fiber and the associated composites along with their feasible fabrication methods and surface treatments in terms of their morphological, thermal, mechanical, and physical properties. Furthermore, this study facilitates the industrial production of coir fiber-reinforced biocomposites through the efficient utilization of coir husk-generated fibers.

13.
ACS Omega ; 6(9): 6124-6133, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33718703

RESUMO

The development of sustainable and innovative products through solving the constantly raising demands of end users is one of the significant parts of research and development. Herein, the development of a green composite is reported with the reinforcement of naturally originated flax and artificial glass woven fabrics through incorporating with the methylene diphenyl diisocyanate (MDI) resin. The glass fabrics were treated with silane and flax fabrics by using NaOH before the composite production to increase the affinity of fibers toward the resin. Composite panels were developed with four different ratios of glass and flax woven fabric reinforcement (100/0, 83.33/16.67, 50/50, and 0/100) to investigate their performance with the MDI resin. The composites were characterized by tensile and flexural analysis to investigate the mechanical performances. The thermogravimetric characteristics of the composites were examined for checking the thermal stability of the produced composites. The surface morphology was investigated for observing the surfaces of the composites before and after applying tensile loads. Scanning electron microscopy (SEM) deployed EDX linear scanning was used for ensuring about the signals of different chemical constituents into the matrix. Fourier transform infrared spectroscopy (FTIR) was conducted for finding out the fingerprint of the chemical elements of the produced composites. Besides, the water absorption and moisture content tests were also conducted to examine the moisture absorption by the pure glass, flax, and hybrid composites. Further, statistical analysis of variances was performed to test the significance of the differences in the mechanical properties of the individual types of the composites developed. For investigating the relationship between the proportion of woven glass fabric in the reinforcement and the mechanical properties, regression analysis was used. The ANOVA test was also examined for checking the significance of the mechanical properties of the composites.

14.
Sci Rep ; 11(1): 3618, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574484

RESUMO

Coir is one of the most important natural fibers having significant potentiality in structural biocomposites production. The long coir fiber (LCF) and short fibrous chips (CFC) were extracted from the husk of coconut. The dimensions of the CFC were within 1.0-12.5 mm and the LCF were within 2.0 mm. All the fibers and fibrous chips were treated with 5% NaOH (alkali) before the biocomposite manufacturing. Different percentages (8%, 10%, and 12%) of melamine-urea-formaldehyde (MUF) were used to produce the tri-layered medium density composite panels with 12 mm thickness. The mechanical properties (tensile, flexural, and internal bonding strengths) of coir reinforced multilayered composites has been studied for all the produced biocomposites. The morphological, micro-structural, and bonding mechanisms were investigated by Scanning electron microscope and Fourier-transform infrared spectroscopy analysis. Thermal properties of the biocomposites were studied by thermal conductivity, thermogravimetric analysis, and derivative thermogravimetry characterization. The moisture contents of the final composite panels were also investigated in this study. The main objective of this work is to investigate the influences of MUF on treated coir fiber and fibrous chips reinforced tri-layered biocomposites. Beside, a novel sustainable product is developed through reinforcing the fibrous chip with coir fiber in terms of multilayered biocomposite panels.

15.
Sci Rep ; 11(1): 22397, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789804

RESUMO

This study reports on a novel coloration approach for sisal/cotton interwoven fabric via in situ synthesis of European larch (Larix decidua) heartwood-anchored sustainable nanosilver. The heartwood extracts functioned as the reducing and stabilizing agent in reaction systems. The deposited silver nanoparticles (AgNPs) over the fabric surfaces displayed brilliant coloration effects with improved fastness ratings and color strengths (K/S). The successful depositions of nanosilvers were quantified and increasing trends in K/S values with the increase in silver precursor loading were discovered. The concentrations of AgNPs deposited on fabric surfaces were found to be 16 mg/L, 323 mg/L, and 697 mg/L, which were measured through an iCP OES (atomic absorption spectroscopy) test. The K/S values obtained for different loadings of silver precursors (0.5, 1.5, and 2.5 mM (w/v)) are 2.74, 6.76, and 8.96. Morphological studies of the control and AgNP-treated fabrics also displayed a uniform and homogeneous distribution of AgNPs over the fabric surfaces. FTIR (Fourier transform infrared spectroscopy) studies of the sustainably developed materials further confirms the successful bonding between the fabrics and AgNPs. Furthermore, stability against temperature was also noticed as per TGA (thermogravimetric analysis) and DTG (derivative TG) analysis although there was a slight decline from the control sisal/cotton interwoven fabrics observed. Statistically, regression analysis and ANOVA tests were conducted to understand the significance of increased nanosilver loading on sisal/cotton interwoven fabrics. In summary, the perceived results demonstrated successful coloration and functionalization of sisal/cotton interwoven fabrics through green AgNPs, which could indicate a new milestone for industrial production units.

16.
SN Comput Sci ; 2(5): 371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34254055

RESUMO

Coronavirus disease 2019 in short COVID-19 is a contagious disease caused by coronavirus SARS-CoV-2, which has caused a global pandemic and still infecting millions around the globe. COVID-19 has made an enormous impact on everybody's day-to-day life. One of the main strengths of COVID-19 is its extraordinary infectious capability. Early detection systems can thus play a big role in curbing the exponential growth of COVID-19. Some medical radiography techniques, such as chest X-rays and chest CT scans, are used for fast and reliable detection of coronavirus-induced pneumonia. In this paper, we propose a histogram of oriented gradients and deep convolutional network-based model that can find out the specific abnormality in frontal chest X-ray images and effectively classify the data into COVID-19 positive, pneumonia positive, and normal classes. The proposed system performed effectively in terms of various performance measures and proved capable as an effective early detection system.

17.
Gels ; 8(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35049558

RESUMO

Gelatin coating is an effective way to prolong the shelf life of meat products. Aiming at solving the problem of flavor deterioration during the storage of pork at room temperature, pork coating technology was developed to preserve the pork at 25 °C, and the comprehensive sensory analysis of vision, touch, smell, and taste was used to study the effect of coating on preservation of pork flavor. Herein, uncoated (control) and coated pork samples (including gelatin coating and gelatin coating incorporated with ginger essential oil) were analyzed to investigate the integrity of pork periodically during storage at 25 °C for weight loss, color, texture (springiness, chewiness, cohesiveness, gumminess, and hardness), microstructure, odor (electronic nose), taste (electronic tongue), volatile flavor substance, and taste ingredients. The results suggested that ginger essential oil (GEO) gelatin coating and gelatin coating can effectively inhibit the loss of water dispersion and slow down the oxidation reaction, coating treatments could significantly (p < 0.05) retarded the weight loss of pork slices, with values of 20.19%, 15.95%, 13.12% for uncoated, gelatin coated, and GEO-gelatin coated samples during 24 h of storage, respectively. Compared with control group, the color, texture, smell, and taste evaluations demonstrated that coating treatments had improved sensory and texture attributes during the storage period. Furthermore, the comprehensive results from the physical property assays (especially the texture), morphological assay and volatile odor assays showed that the GEO-fish gelatin composite coating had better preservation effect on pork flavor than the fish gelatin coating. The study suggests that the gelatin composite coating could be developed as a prospective active packaging to preserve pork meat at room temperature.

18.
Polymers (Basel) ; 12(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392800

RESUMO

Composite materials reinforced with biofibers and nanomaterials are becoming considerably popular, especially for their light weight, strength, exceptional stiffness, flexural rigidity, damping property, longevity, corrosion, biodegradability, antibacterial, and fire-resistant properties. Beside the traditional thermoplastic and thermosetting polymers, nanoparticles are also receiving attention in terms of their potential to improve the functionality and mechanical performances of biocomposites. These remarkable characteristics have made nanobiocomposite materials convenient to apply in aerospace, mechanical, construction, automotive, marine, medical, packaging, and furniture industries, through providing environmental sustainability. Nanoparticles (TiO2, carbon nanotube, rGO, ZnO, and SiO2) are easily compatible with other ingredients (matrix polymer and biofibers) and can thus form nanobiocomposites. Nanobiocomposites are exhibiting a higher market volume with the expansion of new technology and green approaches for utilizing biofibers. The performances of nanobiocomposites depend on the manufacturing processes, types of biofibers used, and the matrix polymer (resin). An overview of different natural fibers (vegetable/plants), nanomaterials, biocomposites, nanobiocomposites, and manufacturing methods are discussed in the context of potential application in this review.

19.
AJNR Am J Neuroradiol ; 41(11): 2062-2067, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33033051

RESUMO

BACKGROUND AND PURPOSE: Infratentorial and spinal cord lesions are important for diagnosing and monitoring multiple sclerosis, but they are difficult to detect on conventional MR imaging. We sought to improve the detection of infratentorial and upper cervical cord lesions using composite FLAIR3 images. MATERIALS AND METHODS: 3D T2-weighted FLAIR and 3D T2-weighted images were acquired in 30 patients with MS and combined using the FLAIR3 formula. FLAIR3 was assessed against 3D T2-FLAIR by comparing the number of infratentorial and upper cervical cord lesions per subject using the Wilcoxon signed rank test. Intrarater and interrater reliability was evaluated using the intraclass correlation coefficient. The number of patients with and without ≥1 visible infratentorial/spinal cord lesion on 3D T2-FLAIR versus FLAIR3 was calculated to assess the potential impact on the revised MS diagnostic criteria. RESULTS: Compared with 3D T2-FLAIR, FLAIR3 detected significantly more infratentorial (mean, 4.6 ± 3.6 versus 2.0 ± 1.8, P < .001) and cervical cord (mean, 1.58 ± 0.94 versus 0.46 ± 0.45, P < .001) lesions per subject. FLAIR3 demonstrated significantly improved interrater reliability (intraclass correlation coefficient = 0.77 [95% CI, 0.63-0.87] versus 0.60 [95% CI, 0.40-0.76] with 3D T2-FLAIR, P = .019) and a tendency toward a higher intrarater reliability (0.86 [95% CI, 0.73-0.93] versus 0.79 [95% CI, 0.61-0.89], P = .23). In our cohort, 20%-30% (47%-67%) of the subjects with MS had ≥ 1 infratentorial (cervical cord) lesion visible only on FLAIR3. CONCLUSIONS: FLAIR3 provides higher sensitivity than T2-FLAIR for the detection of MS lesions in infratentorial brain parenchyma and the upper cervical cord.


Assuntos
Encéfalo/diagnóstico por imagem , Medula Cervical/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Esclerose Múltipla/diagnóstico por imagem , Neuroimagem/métodos , Adulto , Encéfalo/patologia , Medula Cervical/patologia , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Reprodutibilidade dos Testes
20.
Nanomaterials (Basel) ; 9(4)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965597

RESUMO

This paper reports a novel route for the coloration of polyester fabric with green synthesized silver nanoparticles (G-AgNPs@PET) using chitosan as a natural eco-friendly reductant. The formation of AgNPs was confirmed by UV-visible spectroscopy. The morphologies and average particles size of G-AgNPs was investigated by transmission electron microscope (TEM) analysis. The uniform deposition of G-AgNPs on the PET fabric surface was confirmed with scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The thermal properties were investigated using a thermogravimetric analyzer (TGA). The coloration and fastness properties of fabric were found to be significantly improved, a result related to the surface plasmon resonance of G-AgNPs. The antibacterial properties of fabric were also found to be excellent as more than 80% bacterial reduction was noticed even after 10 washing cycles. Overall, the proposed coating process using green nanoparticles can contribute to low-cost production of sustainable textiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA