RESUMO
Metals are beneficial to life, but the presence of these elements in excessive amounts can harm both organisms and the environment; therefore, detecting the presence of metals is essential. Currently, metal detection methods employ powerful instrumental techniques that require a lot of time and money. Hence, the development of efficient and effective metal indicators is essential. Several synthetic metal detectors have been made, but due to their risk of harm, the use of natural pigments is considered a potential alternative. Experiments are needed for their development, but they are expensive and time-consuming. This review explores various computational methods and approaches that can be used to investigate metal-pigment interactions because choosing the right methods and approaches will affect the reliability of the results. The results show that quantum mechanical methods (ab initio, density functional theory, and semiempirical approaches) and molecular dynamics simulations have been used. Among the available methods, the density functional theory approach with the B3LYP functional and the LANL2DZ ECP and basis set is the most promising combination due to its good accuracy and cost-effectiveness. Various experimental studies were also in good agreement with the results of computational methods. However, deeper analysis still needs to be carried out to find the best combination of functions and basis sets.
RESUMO
Molecularly Imprinted Microspheres (MIMs) or Microsphere Molecularly Imprinted Polymers represent an innovative design for the selective extraction of active compounds from natural products, showcasing effectiveness and cost-efficiency. MIMs, crosslinked polymers with specific binding sites for template molecules, overcome irregularities observed in traditional Molecularly Imprinted Polymers (MIPs). Their adaptability to the shape and size of target molecules allows for the capture of compounds from complex mixtures. This review article delves into exploring the potential practical applications of MIMs, particularly in the extraction of active compounds from natural products. Additionally, it provides insights into the broader development of MIM technology for the purification of active compounds. The synthesis of MIMs encompasses various methods, including precipitation polymerization, suspension polymerization, Pickering emulsion polymerization, and Controlled/Living Radical Precipitation Polymerization. These methods enable the formation of MIPs with controlled particle sizes suitable for diverse analytical applications. Control over the template-to-monomer ratio, solvent type, reaction temperature, and polymerization time is crucial to ensure the successful synthesis of MIPs effective in isolating active compounds from natural products. MIMs have been utilized to isolate various active compounds from natural products, such as aristolochic acids from Aristolochia manshuriensis and flavonoids from Rhododendron species, among others. Based on the review, suspension polymerization deposition, which is one of the techniques used in creating MIPs, can be classified under the MIM method. This is due to its ability to produce polymers that are more homogeneous and exhibit better selectivity compared to traditional MIP techniques. Additionally, this method can achieve recovery rates ranging from 94.91% to 113.53% and purities between 86.3% and 122%. The suspension polymerization process is relatively straightforward, allowing for the effective control of viscosity and temperature. Moreover, it is cost-effective as it utilizes water as the solvent.
Assuntos
Produtos Biológicos , Microesferas , Impressão Molecular , Polímeros Molecularmente Impressos , Polimerização , Produtos Biológicos/química , Impressão Molecular/métodos , Polímeros Molecularmente Impressos/química , Polímeros/químicaRESUMO
Molecularly imprinted mesoporous silica (MIPMS) is one of the methods to improve site accessibility molecule target on molecularly imprinted polymer (MIP) for application in solid-phase extraction (SPE). The MIPMS was prepared using salbutamol sulfate as template molecule, cetyltrimethylammonium bromide as a directing agent, and tetraethyl orthosilicate and methyltriethoxysilane were used as silica precursor and organosilane. In this study, two TEOS : MTES ratios were used. The MIPMS-2 with 3 : 1 ratio of TEOS : MTES has better analytical performance than the MIPMS-1 with 2 : 1 ratio of TEOS : MTES. The adsorption capacity of MIPMS-2 was about 0.0934 mg/g, and it was 0.0407 mg/g for NIPMS-2. The extraction ability of MIPMS-2 was good, with a recovery of about 104.79% ± 1.01% of salbutamol in spiked serum. The imprinting factor (IF) value obtained is 1.2. When serum was spiked with salbutamol and terbutaline, the ability of NIPMS-2 to recognize salbutamol increased. Therefore, optimizing the conditions for the MIPMS synthesis is necessary to produce a sorbent with better selectivity.
Assuntos
Albuterol , Impressão Molecular , Dióxido de Silício , Impressão Molecular/métodos , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , AdsorçãoRESUMO
During the last decade, advances have been made in nanotechnology using nanomaterials, leading to improvements in their performance. Gold nanoparticles (AuNPs) have been widely used in the field of sensor analysis and are also combined with certain materials to obtain the desired characteristics. AuNPs are commonly used as colorimetric sensors in detection methods. In developing an ideal sensor, there are certain characteristics that must be met such as selectivity, sensitivity, accuracy, precision, and linearity, among others. Various methods for the synthesis of AuNPs and conjugation with other components have been carried out in order to obtain good characteristics for their application. AuNPs can be applied in the detection of both heavy metals and biological molecules. This review aimed at observing the role of AuNPs in its application. The synthesis of AuNPs for sensors will also be revealed, along with their characteristics suitable for this role. In the application method, the size and shape of the particles must be considered. AuNPs used in heavy metal detection have a particle size of around 15-50 nm; in the detection of biological molecules, the particle size of AuNPs used is 6-35 nm whereas in pharmaceutical compounds for cancer treatment and the detection of other drugs, the particle size used is 12-30 nm. The particle sizes did not correlate with the type of molecules regardless of whether it was a heavy metal, biological molecule, or pharmaceutical compound but depended on the properties of the molecule itself. In general, the best morphology for application in the detection process is a spherical shape to obtain good sensitivity and selectivity based on previous studies. Functionalization of AuNPs with conjugates/receptors can be carried out to increase the stability, sensitivity, selectivity, solubility, and plays a role in detecting biological compounds through conjugating AuNPs with biological molecules.
Assuntos
Nanopartículas Metálicas , Metais Pesados , Ouro , Colorimetria/métodos , Preparações FarmacêuticasRESUMO
ACE2 and Mpro in the pathology of SARS-CoV-2 show great potential in developing COVID-19 drugs as therapeutic targets, due to their roles as the "gate" of viral entry and viral reproduction. Of the many potential compounds for ACE2 and Mpro inhibition, α-mangostin is a promising candidate. Unfortunately, the potential of α-mangostin as a secondary metabolite with the anti-SARS-CoV-2 activity is hindered due to its low solubility in water. Other xanthone isolates, which also possess the xanthone core structure like α-mangostin, are predicted to be potential alternatives to α-mangostin in COVID-19 treatment, addressing the low drug-likeness of α-mangostin. This study aims to assess the potential of xanthone derivative compounds in the pericarp of mangosteen (Garcinia mangostana L.) through computational study. The study was conducted through screening activity using molecular docking study, drug-likeness prediction using Lipinski's rule of five filtration, pharmacokinetic and toxicity prediction to evaluate the safety profile, and molecular dynamic study to evaluate the stability of formed interactions. The research results showed that there were 11 compounds with high potential to inhibit ACE2 and 12 compounds to inhibit Mpro. However, only garcinone B, in addition to being indicated as active, also possesses a drug-likeness, pharmacokinetic, and toxicity profile that was suitable. The molecular dynamic study exhibited proper stability interaction between garcinone B with ACE2 and Mpro. Therefore, garcinone B, as a xanthone derivative isolate compound, has promising potential for further study as a COVID-19 treatment as an ACE2 and Mpro inhibitor.
Assuntos
COVID-19 , Garcinia mangostana , Xantonas , Humanos , Garcinia mangostana/química , Enzima de Conversão de Angiotensina 2 , Simulação de Acoplamento Molecular , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Xantonas/farmacologia , Xantonas/uso terapêutico , Xantonas/químicaRESUMO
Gold and silver nanoparticles are nanoparticles that have been widely used in various fields and have shown good benefits. The method of nanoparticle biosynthesis utilizing plant extracts, also known as green synthesis, has become a promising method considering the advantages it has compared to other synthesis methods. This review aims to give an overview of the phytochemical compounds in plants used in the synthesis of gold and silver nanoparticles, the nanoparticle properties produced using plant extracts based on the concentration and structure of phytochemical compounds, and their applications. Phytochemical compounds play an important role as reducing agents and stabilizers in the stages of the synthesis of nanoparticles. Polyphenol compounds, reducing sugars, and proteins are the main phytochemical compounds that are responsible for the synthesis of gold and silver nanoparticles. The concentration of phytochemical compounds affects the physical properties, stability, and activity of nanoparticles. This is important to know to be able to overcome limitations in controlling the physical properties of the nanoparticles produced. Based on structure, the phytochemical compounds that have ortho-substituted hydroxyl result in a smaller size and well-defined shape, which can lead to greater activity and stability. Furthermore, the optimal condition of the biosynthesis process is required to gain a successful reaction that includes setting the metal ion concentration, temperature, reaction time, and pH.
Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/química , Ouro/química , Extratos Vegetais/química , Compostos Fitoquímicos , Química Verde/métodosRESUMO
Black betel leaf from East Kalimantan contains various secondary metabolites such as alkaloid saponins, flavonoids, and tannins. A compound, piperenamide A, which has antimicrobial activity, is also found in black betel leaf. This study aims to identify and authenticate the compound piperenamide A found in black betel leaf extract in other types of betel plant using HPLC and FTIR-chemometrics. The extraction method used was maceration with 70% ethanol solvent. Determination of piperenamide A content in black betel leaf extract was via HPLC column C18, with a maximum wavelength of 259 nm and a mobile phase of water:acetonitrile at a flow rate of 1 mL/minute. From the results, piperenamide A was only found in black betel (Piper acre) and not in Piper betel and Piper crocatum. Piperenamide A levels obtained were 4.03, 6.84, 5.35, 13.85, and 2.15%, respectively, in the samples studied. The combination of FTIR spectra with chemometric methods such as PCA and PLS-DA was used to distinguish the three types of betel. Discriminant analysis can classify black betel (Piper acre), Piper betel, and Piper crocatum according to its type. These methods can be used for identification and authentication of black betel.
Assuntos
Anti-Infecciosos , Piper , Piper/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Quimiometria , Análise de Fourier , Controle de Qualidade , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Selenium (Se) is a trace mineral found in plants with a distinct sulfuric odor that is cardioprotective and reported to have low toxicity. West Java, Indonesia, has a variety of plants with a distinct odor that are consumed raw, such as jengkol (Archidendron pauciflorum). This study is conducted to determine the Se content of jengkol using the fluorometric method, where the jengkol extract is separated, and the Se content is detected using high-pressure liquid chromatography (HPLC), combined with fluorometry. Two fractions with the highest Se concentration (A and B) are found and characterized using liquid chromatography mass spectrometry to predict the organic Se content by comparing the results with those in the external literature. The Se content of fraction (A) is found to be selenomethionine (m/z 198), gamma glutamyl-methyl-selenocysteine-(GluMetSeCys; m/z 313), and the Se-sulfur (S) conjugate of cysteine-selenoglutathione (m/z 475). Furthermore, these compounds are docked on receptors involved in cardioprotection. The receptors are peroxisome proliferator-activated receptor-γ (PPAR-γ), nuclear factor kappa-B (NF-κB), and phosphoinositide 3-kinase (PI3K/AKT). The interaction of receptor and ligan that has the lowest binding energy of the docking simulation is measured with molecular dynamic simulation. MD is performed to observe bond stability and conformation based on root mean square deviation, root mean square fluctuation, radius gyration, and MM-PBSA parameters. The results of the MD simulation show that the stability of the complex organic Se compounds tested with the receptors is lower than that of the native ligand, while the binding energy is lower than that of the native ligand based on the MM-PSBA parameter. This indicates that the predicted organic Se in jengkol, i.e., gamma-GluMetSeCys to PPAR-γ, gamma-GluMetSeCys AKT/PI3K, and Se-S conjugate of cysteine-selenoglutathione to NF-κB, has the best interaction results and provides a cardioprotection effect, compared to the molecular interaction of the test ligands with the receptors.
Assuntos
NF-kappa B , Selênio , NF-kappa B/metabolismo , Selênio/química , Fosfatidilinositol 3-Quinases , PPAR gama/metabolismo , Cisteína/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , LigantesRESUMO
Volumetric absorptive microsampling (VAMS) is the newest and most promising sample-collection technique for quantitatively analyzing drugs, especially for routine therapeutic drug monitoring (TDM) and pharmacokinetic studies. This technique uses an absorbent white tip to absorb a fixed volume of a sample (10-50 µL) within a few seconds (2-4 s), is more flexible, practical, and more straightforward to be applied in the field, and is probably more cost-effective than conventional venous sampling (CVS). After optimization and validation of an analytical method of a drug taken by VAMS, a clinical validation study is needed to show that the results by VAMS can substitute what is gained from CVS and to justify implementation in routine practice. This narrative review aimed to assess and present studies about optimization and analytical validation of assays for drugs taken by VAMS, considering their physicochemical drug properties, extraction conditions, validation results, and studies on clinical validation of VAMS compared to CVS. The review revealed that the bio-analysis of many drugs taken with the VAMS technique was optimized and validated. However, only a few clinical validation studies have been performed so far. All drugs that underwent a clinical validation study demonstrated good agreement between the two techniques (VAMS and CVS), but only by Bland-Altman analysis. Only for tacrolimus and mycophenolic acid were three measurements of agreement evaluated. Therefore, VAMS can be considered an alternative to CVS in routine practice, especially for tacrolimus and mycophenolic acid. Still, more extensive clinical validation studies need to be performed for other drugs.
Assuntos
Ácido Micofenólico , Tacrolimo , BioensaioRESUMO
Our previous study verified that the waste skin of cocoa (Theobroma cacao L) fruit or waste cocoa pod husks had the efficacy to overcome hair loss or alopecia. This study aims to determine the formula and activity of hair cream of cocoa pod peel water fraction, which is effective in stimulating hair growth. Activity testing uses the modified Tanaka method. The results showed that the cocoa husk wastewater fraction could be formulated into hair cream, but there were changes in viscosity and pH after the freeze-thaw test, but still within the allowed limit. The hair cream water fraction gel stimulated hair growth activity based on the hair length data with a significant difference in concentration of the preparation. The best activity in hair cream preparation was at 12.5% concentration. In addition, there were no signs of irritation to the rabbit's skin where hair cream preparation was applied. The results of this study indicated that cocoa fruit peel cream can be used for antialopecia treatments.
Assuntos
Cacau , Animais , Frutas , Cabelo , CoelhosRESUMO
A metal-mediated molecularly imprinted polymer (MMIP) monolithic column was prepared as the stationary phase for high-performance liquid chromatography (HPLC) and applied to the enantiomeric separation of rac-citronellal. MMIP column was prepared through in situ copolymerizations with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate/[BMIM][BF4] as the primary pore-forming agent and cobalt(II) acetate as the metal pivot. Interactions between polymer components in the synthesized monolith were assessed by FTIR to identify the functional groups. The monolith morphology was characterized with SEM, and the template removal was detected by UV Spectrophotometry at 253 nm. In this study, (R)-(+)-citronellal was used as a template, whereas 4-vinylpyridine (4-VP) was employed as the functional monomer with two monomer crosslinkers, trimethylolpropane trimethacrylate (TRIM), and ethylene glycol dimethacrylate (EDMA). The ternary mixture of porogenic solvent consisted of [BMIM][BF4], dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) with the applied ratio of 1 : 1:1 (v/v) and 10 : 1:5 (v/v) for the preparation of MMIP using TRIM and EDMA crosslinkers, respectively. Co(II) ion was added to the porogenic solvent before being mixed with the functional monomer and the crosslinker mixtures. Separating the rac-citronellal was achieved on the synthesized MMIP, showing better selectivity than the monolithic metal-mediated nonimprinted polymer (MNIP), nonimprinted polymer (NIP), and molecularly imprinted polymer (MIP).
RESUMO
Pigment red 53 is a synthetic dye that has been banned in cosmetic products due to the possibility of causing blood disorders and spleen sarcoma. The indicator strip employs qualitative analysis methods that are simpler, easier, and quicker than an instrumental analysis. The indicator strip is made of a polymethylmethacrylate (PMMA) and polystyrene (PS) mixture using a reagent blending method with specific reagents of concentrated sulfuric acid (H2SO4), concentrated hydrochloric acid (HCl), or 10% sodium hydroxide (NaOH). Pigment red 53 detections with an indicator strip are based on the occurrence of a specific color change reaction between the reagent and pigment red 53 through sulfonation with concentrated H2SO4, neutralization with 10% NaOH, and reaction of pigment red 53's azo group with concentrated HCl. PMMA was made with a concentration of 5% (w/t), and mixtures of PS:PMMA 1:2, 1:3, and 1:4 had solvent-to-specific reagent ratios of 60:40, 80:20, and 90:10. The best results were obtained for PMMA-H2SO4 (90:10), PMMA-HCl (80:20), and PMMA-NaOH (60:40), with the lowest detection limits equaling 20 ppm, 50 ppm, and 20 ppm, respectively. Meanwhile, the best PS:PMMA (1:4)-based indicator strips obtained were PS:PMMA-H2SO4 (90:10), PS:PMMA-HCl (80:20), and PS:PMMA-NaOH (60:40), with the lowest detection limits being 20 ppm, 10 ppm, and 20 ppm, respectively. All indicator strips are stable for at least 80 days. Indicator strips can be used as a simple and applicable method for detecting pigment red 53 in cosmetic products with a good performance.
Assuntos
Polimetil Metacrilato , Poliestirenos , Polímeros , Substâncias Perigosas , Hidróxido de SódioRESUMO
Beta-blockers are antihypertensive drugs and can be abused by athletes in some sport competitions; it is therefore necessary to monitor beta-blocker levels in biological samples. In addition, beta-blocker levels in environmental samples need to be monitored to determine whether there are contaminants from the activities of the pharmaceutical industry. Several extraction methods have been developed to separate beta-blocker drugs in a sample, one of which is molecularly imprinted polymer solid-phase extraction (MIP-SPE). MIPs have some advantages, including good selectivity, high affinity, ease of synthesis, and low cost. This review provides an overview of the polymerization methods for synthesizing MIPs of beta-blocker groups. The methods that are still widely used to synthesize MIPs for beta-blockers are the bulk polymerization method and the precipitation polymerization method. MIPs for beta-blockers still need further development, especially since many types of beta-blockers have not been used as templates in the MIP synthesis process and modification of the MIP sorbent is required, to obtain high throughput analysis.
Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Antagonistas Adrenérgicos beta , Humanos , Impressão Molecular/métodos , Polimerização , Extração em Fase Sólida/métodosRESUMO
The rational preparation of molecularly imprinted polymers (MIPs) in order to have selective extraction of salmeterol xinafoate (SLX) from serum was studied. SLX is an acting ß-adrenergic receptor agonist used in the treatment of asthma and has an athletic performance-enhancing effect. Molecular dynamics were used for the simulation of the SLX-imprinted pre-polymerization system, to determine the stability of the system. The computational simulation showed that SLX as a template, 4-hydroxyethyl methacrylate (HEMA) as a monomer, and trimethylolpropane trimethacrylate (TRIM) as a crosslinker in mol ratio of 1:6:20 had the strongest interaction in terms of the radial distribution functional. To validate the computational result, four polymers were synthesized using the precipitation polymerization method, and MIP with composition and ratio corresponding with the system with the strongest interaction as an MD simulation result showed the best performance, with a recovery of 96.59 ± 2.24% of SLX in spiked serum and 92.25 ± 1.12% when SLX was spiked with another analogue structure. Compared with the standard solid phase extraction sorbent C-18, which had a recovery of 79.11 ± 2.96%, the MIP showed better performance. The harmony between the simulation and experimental results illustrates that the molecular dynamic simulations had a significant role in the study and development of the MIPs for analysis of SLX in biological fluid.
Assuntos
Impressão Molecular , Xinafoato de Salmeterol/análise , Simulação de Dinâmica Molecular , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Xinafoato de Salmeterol/química , Extração em Fase Sólida/métodosRESUMO
Molecularly imprinted polymer (MIP) computational design is expected to become a routine technique prior to synthesis to produce polymers with high affinity and selectivity towards target molecules. Furthermore, using these simulations reduces the cost of optimizing polymerization composition. There are several computational methods used in MIP fabrication and each requires a comprehensive study in order to select a process with results that are most similar to properties exhibited by polymers synthesized through laboratory experiments. Until now, no review has linked computational strategies with experimental results, which are needed to determine the method that is most appropriate for use in designing MIP with high molecular recognition. This review will present an update of the computational approaches started from 2016 until now on quantum mechanics, molecular mechanics and molecular dynamics that have been widely used. It will also discuss the linear correlation between computational results and the polymer performance tests through laboratory experiments to examine to what extent these methods can be relied upon to obtain polymers with high molecular recognition. Based on the literature search, density functional theory (DFT) with various hybrid functions and basis sets is most often used as a theoretical method to provide a shorter MIP manufacturing process as well as good analytical performance as recognition material.
RESUMO
Molecular imprinting is a technique for creating artificial recognition sites on polymer matrices that complement the template in terms of size, shape, and spatial arrangement of functional groups. The main advantage of Molecularly Imprinted Polymers (MIP) as the polymer for use with a molecular imprinting technique is that they have high selectivity and affinity for the target molecules used in the molding process. The components of a Molecularly Imprinted Polymer are template, functional monomer, cross-linker, solvent, and initiator. Many things determine the success of a Molecularly Imprinted Polymer, but the Molecularly Imprinted Polymer component and the interaction between template-monomers are the most critical factors. This review will discuss how to find the interaction between template and monomer in Molecularly Imprinted Polymer before polymerization and after polymerization and choose the suitable component for MIP development. Computer simulation, UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Proton-Nuclear Magnetic Resonance (1H-NMR) are generally used to determine the type and strength of intermolecular interaction on pre-polymerization stage. In turn, Suspended State Saturation Transfer Difference High Resolution/Magic Angle Spinning (STD HR/MAS) NMR, Raman Spectroscopy, and Surface-Enhanced Raman Scattering (SERS) and Fluorescence Spectroscopy are used to detect chemical interaction after polymerization. Hydrogen bonding is the type of interaction that is becoming a focus to find on all methods as this interaction strongly contributes to the affinity of molecularly imprinted polymers (MIPs).
RESUMO
Molecular imprinting technology is a new analytical method that is highly selective and specific for certain analytes in artificial receptor design. The renewal possibilities of this technology make it an ideal material for sundry application fields. Molecularly imprinted polymers (MIPs) are polymeric matrices that have molecules printed on their surfaces; these surfaces can chemically interact with molecules or follow the pattern of the available template cavities obtained using imprinting technology. A MIP is useful for separating and analysing complex samples, such as biological fluids and environmental samples, because it is a strong analytical recognition element that can mimick natural recognition entities like biological receptors and antibodies. The MIP components consist of the target template, functional monomer, crosslinker, polymerisation initiator, and porogen. The effectiveness and selectivity of a MIP are greatly influenced by variations in the components. This review will provide an overview of the effect of MIP component ratio on analytical performance to each target analyte; it will also provide a strategy to obtain the best MIP performance. For every MIP, each template : monomer : crosslinker ratio shows a distinct performance for a specific analyte. The effects of the template : monomer : crosslinker ratio on a MIP's analytical performances-measured by the imprinting factor, sorbent binding capacity, and sorbent selectivity-are briefly outlined.
Assuntos
Polímeros Molecularmente Impressos/química , Extração em Fase Sólida/métodos , Antibacterianos/análise , Antibacterianos/isolamento & purificação , Reagentes de Ligações Cruzadas/química , Metacrilatos/química , Polimerização , Solventes/químicaRESUMO
Molecularly imprinted polymers (MIPs) are specific crosslinked polymers that exhibit binding sites for template molecules. MIPs have been developed in various application areas of biology and chemistry; however, MIPs have some problems, including an irregular material shape. In recent years, studies have been conducted to overcome this drawback, with the synthesis of uniform microsphere MIPs or molecularly imprinted microspheres (MIMs). The polymer microsphere is limited to a minimum size of 5 nm and a molecular weight of 10,000 Da. This review describes the methods used to produce MIMs, such as precipitation polymerisation, controlled/'Living' radical precipitation polymerisation (CRPP), Pickering emulsion polymerisation and suspension polymerisation. In addition, some green chemistry aspects and future perspectives will also be given.
Assuntos
Microesferas , Impressão Molecular/tendências , Polímeros/química , Emulsões/química , Humanos , Polimerização , Polímeros/síntese químicaRESUMO
Regenerative therapy with keratinocyte growth factor (KGF) is a novel therapeutic approach for treatment of chronic wounds. However, KGF cannot be used directly to the wound site due to its physicochemical instability. In previous study, sacran, a natural megamolecular polysaccharide, showed potential properties as a biomaterial for hydrogel film in wound healing. In this study, we fabricated sacran hydrogel film containing KGF (Sac/KGF-HF) and evaluated the effects of Sac/KGF-HF on fibroblasts migration and re-epithelialization process. We successfully prepared a homogenous and -amorphous Sac/KGF-HF by a casting method. In addition, Sac/KGF-HF had a high swelling ratio and flexibility. Sac/KGF-HF promoted a migration process of NIH3T3 cells and improved wound healing ability in mice with a percentage of wound closure reaching 90.4% at 9 d. Interestingly, the addition of KGF in Sac-HF considerably increased the number of epithelial cells compared to control, which is important in the re-epithelialization process. It could be concluded that KGF in Sac-HF has the potential for promoting Sac-HF abilities in wound healing process.
Assuntos
Fator 7 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Metilgalactosídeos/farmacologia , Polissacarídeos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fator 7 de Crescimento de Fibroblastos/química , Metilgalactosídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Polissacarídeos/químicaRESUMO
In recent years, discovering new drug candidates has become a top priority in research. Natural products have proven to be a promising source for such discoveries as many researchers have successfully isolated bioactive compounds with various activities that show potential as drug candidates. Among these compounds, phenolic compounds have been frequently isolated due to their many biological activities, including their role as antioxidants, making them candidates for treating diseases related to oxidative stress. The isolation method is essential, and researchers have sought to find effective procedures that maximize the purity and yield of bioactive compounds. This review aims to provide information on the isolation or separation methods for phenolic compounds with antioxidant activities using column chromatography, medium-pressure liquid chromatography, high-performance liquid chromatography, counter-current chromatography, hydrophilic interaction chromatography, supercritical fluid chromatography, molecularly imprinted technologies, and high-performance thin layer chromatography. For isolation or purification, the molecularly imprinted technologies represent a more accessible and more efficient procedure because they can be applied directly to the extract to reduce the complicated isolation process. However, it still requires further development and refinement.