Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 56(6): 1792-1806, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35420227

RESUMO

BACKGROUND: Hyperpolarized 13 C MRI quantitatively measures enzyme-catalyzed metabolism in cancer and metabolic diseases. Whole-abdomen imaging will permit dynamic metabolic imaging of several abdominal organs simultaneously in healthy and diseased subjects. PURPOSE: Image hyperpolarized [1-13 C]pyruvate and products in the abdomens of healthy volunteers, overcoming challenges of motion, magnetic field variations, and spatial coverage. Compare hyperpolarized [1-13 C]pyruvate metabolism across abdominal organs of healthy volunteers. STUDY TYPE: Prospective technical development. SUBJECTS: A total of 13 healthy volunteers (8 male), 21-64 years (median 36). FIELD STRENGTH/SEQUENCE: A 3 T. Proton: T1 -weighted spoiled gradient echo, T2 -weighted single-shot fast spin echo, multiecho fat/water imaging. Carbon-13: echo-planar spectroscopic imaging, metabolite-specific echo-planar imaging. ASSESSMENT: Transmit magnetic field was measured. Variations in main magnetic field (ΔB0 ) determined using multiecho proton acquisitions were compared to carbon-13 acquisitions. Changes in ΔB0 were measured after localized shimming. Improvements in metabolite signal-to-noise ratio were calculated. Whole-organ regions of interests were drawn over the liver, spleen, pancreas, and kidneys by a single investigator. Metabolite signals, time-to-peak, decay times, and mean first-order rate constants for pyruvate-to-lactate (kPL ) and alanine (kPA ) conversion were measured in each organ. STATISTICAL TESTS: Linear regression, one-sample Kolmogorov-Smirnov tests, paired t-tests, one-way ANOVA, Tukey's multiple comparisons tests. P ≤ 0.05 considered statistically significant. RESULTS: Proton ΔB0 maps correlated with carbon-13 ΔB0 maps (slope = 0.93, y-intercept = -2.88, R2  = 0.73). Localized shimming resulted in mean frequency offset within ±25 Hz for all organs. Metabolite SNR significantly increased after denoising. Mean kPL and kPA were highest in liver, followed by pancreas, spleen, and kidneys (all comparisons with liver were significant). DATA CONCLUSION: Whole-abdomen coverage with hyperpolarized carbon-13 MRI was feasible despite technical challenges. Multiecho gradient echo 1 H acquisitions accurately predicted chemical shifts observed using carbon-13 spectroscopy. Carbon-13 acquisitions benefited from local shimming. Metabolite energetics in the abdomen compiled for healthy volunteers can be used to design larger clinical trials in patients with metabolic diseases. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Prótons , Ácido Pirúvico , Humanos , Masculino , Ácido Pirúvico/metabolismo , Voluntários Saudáveis , Estudos Prospectivos , Isótopos de Carbono , Imageamento por Ressonância Magnética/métodos , Abdome/diagnóstico por imagem
2.
Magn Reson Med ; 82(5): 1961-1968, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31218753

RESUMO

PURPOSE: Hyperpolarized 129 Xe MR is increasingly being adopted worldwide, but no standards exist for assessing or comparing performance at different 129 Xe imaging centers. Therefore, we sought to develop a thermally polarized xenon phantom assembly, approximating the size of a human torso, along with an associated imaging protocol to enable rapid quality-assurance imaging. METHODS: MR-compatible pressure vessels, with an internal volume of 5.85 L, were constructed from pressure-rated, engineering grade PE4710 high-density polyethylene. They were filled with a mixture of 61% natural xenon and 39% oxygen to approximately 11.6 bar and placed in a loader shell filled with a 0.56% saline solution to mimic the human chest. Imaging employed a 2D spoiled gradient-echo sequence using non-slice-selective excitation (TR/TE = 750/6.13 ms, flip angle = 74°, FOV = 40 × 440 mm, matrix = 64 × 32, bandwidth = 30 Hz/pixel, averages = 4), resulting in a 1.6 min acquisition. System characterization and imaging were performed at 8 different MRI centers. RESULTS: At 3 Telsa, 129 Xe in the pressure vessels was characterized by T1 = 580.5 ± 8.3 ms, linewidth = 0.21 ppm, and chemical shift = +10.2 ppm. The phantom assembly was used to obtain transmit voltage calibrations and 2D and 3D images across multiple coil and scanner configurations at 8 sites. Across the 5 sites that employed a standard flexible chest coil, the SNR was 12.4 ± 1.8. CONCLUSION: The high-density polyethylene pressure vessels filled with thermally polarized xenon and associated loader shell combine to form a phantom assembly that enables spectroscopic and imaging acquisitions that can be used for testing, quality assurance, and performance tracking-capabilities essential for standardizing hyperpolarized 129 Xe MRI within and across institutions.


Assuntos
Imageamento por Ressonância Magnética/normas , Imagens de Fantasmas/normas , Isótopos de Xenônio , Desenho de Equipamento , Humanos
3.
Magn Reson Med ; 68(6): 1900-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22294386

RESUMO

In this study, the signal-to-noise ratio of hyperpolarized (129)Xe human lung magnetic resonance imaging was compared at 1.5 T and 3 T. Experiments were performed at both B(0) fields with quadrature double Helmholtz transmit-receive chest coils of the same geometry with the same subject loads. Differences in sensitivity between the two field strengths were assessed from the signal-to-noise ratio of multi-slice 2D (129)Xe ventilation lung images obtained at the two field strengths with a spatial resolution of 15 mm × 4 mm × 4 mm. There was a systematically higher signal-to-noise ratio observed at 3 T than at 1.5 T by a factor of 1.25. Mean image signal-to-noise ratio was in the range 27-44 at 1.5 T and 36-51 at 3 T. T 2* of (129)Xe gas in the partially inflated lungs was measured to be 25 ms and 18 ms at 1.5 T and 3 T, respectively. T 2* of (129)Xe gas in fully inflated lungs was measured to be 52 ms and 24 ms at 1.5 T and 3 T, respectively.


Assuntos
Pulmão/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio/administração & dosagem , Administração por Inalação , Adulto , Meios de Contraste/administração & dosagem , Feminino , Gases/administração & dosagem , Humanos , Masculino , Compostos Radiofarmacêuticos/administração & dosagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA