Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 32(10): 3293-308, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26085038

RESUMO

PURPOSE: To formulate f-MWNTs-cationic liposome hybrids for the simultaneous delivery of siPLK1 and doxorubicin to cancer cells. METHOD: f-MWNTs-cationic liposome hybrids were prepared by the thin film hydration method where the lipid film was hydrated with 100 µg/ml or 1 mg/ml of ox-MWNTs-NH3 (+) or MWNTs-NH3 (+) in 5% dextrose. siRNA complexation and protection ability was determined by agarose gel electrophoresis. f-MWNTs and liposome interaction was evaluated using Nile Red (NR) fluorescence spectroscopy. Cellular uptake in A549 cells was assessed by flow cytometry. Silencing of target proteins was determined by Luciferase and MTT assays. Sub-G1 analysis was performed to evaluate apoptosis following co-delivery of siPLK1 and Doxorubicin (Dox). RESULTS: Zeta potential and siRNA complexation profile obtained for all hybrids were comparable to those achieved with cationic liposomes. ox-MWNTs-NH3 (+) showed greater extent of interaction with cationic liposomes compared to MWNTs-NH3 (+). ox-MWNTs-NH3 (+) was able to protect siRNA from nuclease-mediated degradation. Enhanced cellular uptake of both the carrier and loaded siRNA in A549 cell, were observed for this hybrid compared to the liposomal carrier. A synergistic pro-apoptotic effect was obtained when siPLK1 silencing was combined with doxorubicin treatment for the hybrid:siRNA complexes compared to the lipoplexes, in A549 cells in vitro. CONCLUSIONS: f-MWNTs-cationic liposome hybrid designed in this study can serve as a potential vehicle for the co-delivery of siRNA and cytotoxic drugs to cancer cells in vitro.


Assuntos
Cátions/química , Doxorrubicina/química , Lipossomos/química , Nanotubos de Carbono/química , Compostos de Amônio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , RNA Interferente Pequeno/química
2.
Drug Deliv Transl Res ; 14(4): 1077-1092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37957473

RESUMO

The growing interest in employing nano-sized pharmaceutical formulations in veterinary medicine has prompted the exploration of the novel nanocarriers' ability to augment the therapeutic outcome. In this study, we harnessed niosomes, spherical nanocarriers formed through non-ionic surfactant self-assembly, to enhance the therapeutic efficacy of the broad-spectrum antibiotic florfenicol. Pre-formulation studies were conducted to identify the optimal parameters for preparing florfenicol-loaded niosomes (FLNs). These studies revealed that the formulation that consisted of Span 60, cholesterol, and dihexadecyl phosphate (DDP) at a molar ratio of 1:1:0.1 exhibited the highest entrapment efficiency (%EE) and uniform size distribution. In vitro antibacterial testing demonstrated the niosomal capacity to significantly reduce florfenicol minimum inhibitory concentration (MIC) against E. coli and S. aureus. Pharmacokinetic profiles of free florfenicol and FLN were assessed following oral administration of 30 mg florfenicol/kg body weight to healthy or E. coli-infected chickens. FLN exhibited a substantially higher maximum plasma concentration (Cmax) of florfenicol compared to free florfenicol. Furthermore, FLN showed significantly higher area under the curve (AUC0-t) than free florfenicol as revealed from the relative bioavailability studies. Lethal dose (LD) 50 values for both free florfenicol and FLN exceeded 5 g/kg of body weight, indicating high safety profile. Assessment of mortality protection in mice against lethal E. coli infections showed the significantly higher capability of FLN to improve the survival rate (75%) than free florfenicol (25%). Collectively, these findings demonstrate the niosomal ability to improve the oral bioavailability as well as the antibacterial activity of the incorporated veterinary antibiotic florfenicol.


Assuntos
Escherichia coli , Lipossomos , Tianfenicol/análogos & derivados , Animais , Camundongos , Staphylococcus aureus , Galinhas , Antibacterianos/farmacologia , Peso Corporal
3.
RSC Adv ; 14(12): 8583-8601, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38487521

RESUMO

Combining sonochemistry with phytochemistry is a modern trend in the biosynthesis of metallic nanoparticles (NPs), which contributes to the sustainability of chemical processes and minimizes hazardous effects. Herein, titanium dioxide (TiO2) NPs were bioengineered using a novel and facile ultrasound-assisted approach utilizing the greenly extracted essential oil of Ocimum basilicum. FTIR and UV-Vis spectrophotometry were used to confirm the formation of TiO2 NPs. The X-ray diffraction (XRD) analysis showed the crystalline nature of TiO2 NPs. TEM analysis revealed the spherical morphology of the NPs with sizes ranging from 5.55 to 13.89 nm. Energy-dispersive X-ray (EDX) confirmed the purity of the greenly synthesized NPs. TiO2 NPs demonstrated outstanding antitumor activity against breast (MCF-7) and lung (A-549) cancer cells with estimated IC50 values of 1.73 and 4.79 µg mL-1. The TiO2 NPs were cytocompatible to normal cells (MCF-10A) with a selectivity index (SI) of 8.77 for breast and 3.17 for lung cancer. Biological assays revealed a promising potential for TiO2 NPs to induce apoptosis and arrest cells at the sub-G1 phase of the cell cycle phase in both cancer cell lines. Molecular investigations showed the ability of TiO2 NPs to increase apoptotic genes' expression (Bak and Bax) and their profound ability to elevate the expression of apoptotic proteins (caspases 3 and 7). Molecular docking demonstrated strong binding interactions for TiO2 NPs with caspase 3 and EGFR-TK targets. In conclusion, the greenly synthesized TiO2 NPs exhibited potent antitumor activity and mitochondrion-based cell death against breast and lung cancer cell lines while maintaining cytocompatibility against normal cells.

4.
Int J Pharm ; 635: 122776, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841370

RESUMO

Arthritis is a debilitating disease that affects the patient's mobility and quality of life. This study focused on the development and optimization of a cationic nanosized bilosomal formula for the efficient transdermal treatment of arthritis. An optimum Fluticasone Propionate-loaded bilosomes (OFP) was developed using the Draper-Lin small composite design based on the optimization of 4 factors and evaluation of entrapment efficiency (Y1), vesicle size (Y2), skin flux (Y3), and skin accumulation (Y4). The OFP was characterized against the drug suspension, loaded into a Carbopol gel, and a histopathological assessment was conducted on a carrageenan-induced rat joint arthritis in comparison with cultivate® cream and traditional gel. Interluekin-1ß and TNF-α levels were also measured. The optimal formula was formulated using 2.99% phospholipon90G, 0.04% sodium deoxycholate, and 0.29% stearylamine, and showed 84.72%, 268.13 nm, 5.89 µg/cm2/h, and 16.21 µg/cm2 /24 h for Y1, Y2, Y3, and Y4, respectively. The thermal analysis of OFP demonstrated a single broad endothermic peak for bilosomes with no detectable peak for the amorphous drug. TEM images revealed the spherical structures of the nanosized OFP, while CLSM demonstrated enhanced permeation efficiency over the drug suspension. The in-vivo study further proved the promising efficacy of the optimum OFP, where a complete recovery of the normal histological structure of a rat joint and normal levels of the inflammatory markers were observed within 20 days following once daily application of the optimum bilosomal gel. Therefore, OFP represents a competent nanocarrier for efficient transdermal management of joint arthritis.


Assuntos
Artrite , Lipossomos , Ratos , Animais , Carragenina , Fluticasona , Lipossomos/química , Qualidade de Vida , Administração Cutânea , Artrite/induzido quimicamente , Artrite/tratamento farmacológico , Tamanho da Partícula
5.
J Pharm Sci ; 111(5): 1497-1508, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34929155

RESUMO

Ocular infections are classified into superficial keratitis, conjunctivitis or deep infections such as corneal abscesses and blepharitis. Herein, we focused on the development of formulation approaches that could prolong the residence time of gemifloxacin (GM) and enhance its corneal penetration to facilitate GM effects both superficially and at the deep tissues. Ionic gelation method was used to prepare eight forms of GM nanoparticles (NPs) formulated from chitosan polymer using sodium tripolyphosphate (TPP)-induced precipitation method. Differential scanning colorimetry (DSC) and X-ray diffraction (XRD) demonstrated the interaction between the chitosan and GM. Particle size, entrapment efficiency and cumulative in vitro release were used to select the optimal formula using Design Expert® software. The mean diameter of the selected NPs was 158. 4 nm. The average entrapment efficiency and cumulative release exhibited by the formulated NPs were 46.6% and 74.9%, respectively. Pharmacokinetics studies carried out on rabbits revealed that the ocularly-administered NPs significantly increased the loaded GM concentration in the tear and aqueous humour samples that suggested enhancement of precorneal retention and transcorneal permeation, respectively. Furthermore, ocular pharmacodynamic studies conducted on rabbits following ocular infection with Staphylococcus aureus or Pseudomonas aeruginosa showed that the administered NPs augmented the antibacterial activity of the delivered GM. This was demonstrated via the histopathological examination of the dissected corneas that showed preserved histological features and reduced bacterial keratitis on using the GM NPs rather than GM solution. Moreover, the GM NPs-treated corneas showed lower viable bacterial counts than the GM solution-treated corneas. Accordingly, our study illustrated the capability of the chitosan NPs to promote the antibacterial activity of GM against eye infections via ocular administration.


Assuntos
Quitosana , Nanopartículas , Animais , Antibacterianos/farmacologia , Quitosana/farmacologia , Córnea , Portadores de Fármacos/farmacologia , Gemifloxacina/farmacologia , Tamanho da Partícula , Coelhos
6.
J Control Release ; 332: 419-433, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33677010

RESUMO

This study investigates the effect of PD1 blockade on the therapeutic efficacy of novel doxorubicin-loaded temperature-sensitive liposomes. Herein, we report photothermally-activated, low temperature-sensitive magnetoliposomes (mLTSL) for efficient drug delivery and magnetic resonance imaging (MRI). The mLTSL were prepared by embedding small nitrodopamine palmitate (NDPM)-coated iron oxide nanoparticles (IO NPs) in the lipid bilayer of low temperature-sensitive liposomes (LTSL), using lipid film hydration and extrusion. Doxorubicin (DOX)-loaded mLTSL were characterized using dynamic light scattering, differential scanning calorimetry, electron microscopy, spectrofluorimetry, and atomic absorption spectroscopy. Photothermal experiments using 808 nm laser irradiation were conducted. In vitro photothermal DOX release studies and cytotoxicity was assessed using flow cytometry and resazurin viability assay, respectively. In vivo DOX release and tumor accumulation of mLTSL(DOX) were assessed using fluorescence and MR imaging, respectively. Finally, the therapeutic efficacy of PD1 blockade in combination with photothermally-activated mLTSL(DOX) in CT26-tumor model was evaluated by monitoring tumor growth, cytokine release and immune cell infiltration in the tumor tissue. Interestingly, efficient photothermal heating was obtained by varying the IO NPs content and the laser power, where on-demand burst DOX release was achievable in vitro and in vivo. Moreover, our mLTSL exhibited promising MR imaging properties with high transverse r2 relaxivity (333 mM-1 s-1), resulting in superior MR imaging in vivo. Furthermore, mLTSL(DOX) therapeutic efficacy was potentiated in combination with anti-PD1 mAb, resulting in a significant reduction in CT26 tumor growth via immune cell activation. Our study highlights the potential of combining PD1 blockade with mLTSL(DOX), where the latter could facilitate chemo/photothermal therapy and MRI-guided drug delivery.


Assuntos
Doxorrubicina , Lipossomos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Fototerapia , Temperatura
7.
Nanotheranostics ; 4(2): 91-106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190536

RESUMO

Indocyanine green (ICG) is an FDA-approved near-infrared fluorescent dye that has been used in optical imaging and photothermal therapy. Its rapid in vivo clearance and photo-degradation have limited its application. ICG pharmacokinetics and biodistribution have been improved via liposomal encapsulation, while its photothermal stability has been enhanced by ICG J-aggregate (IJA) formation. In the present work, we report a simple approach to engineer a nano-sized, highly stable IJA liposomal formulation. Our results showed that lipid film hydration and extrusion method led to efficient IJA formation in rigid DSPC liposomes, as supported by molecular dynamics modeling. The engineered DSPC-IJA formulation was nano-sized, and with spectroscopic and photothermal properties comparable to free IJA. Promisingly, DSPC-IJA exhibited high fluorescence, which enabled its in vivo tracking, showing prolonged blood circulation and significantly higher tumor fluorescence signals, compared to free ICG and IJA. Furthermore, DSPC-IJA demonstrated high photo-stability in vivo after multiple cycles of 808 nm laser irradiation. Finally, doxorubicin was loaded into liposomal IJA to utilize the co-delivery capabilities of liposomes. In conclusion, with both liposomes and ICG being clinically approved, our novel liposomal IJA could offer a clinically relevant theranostic platform enabling multimodal imaging and combinatory chemo- and photothermal cancer therapy.


Assuntos
Verde de Indocianina , Lipossomos , Nanopartículas/química , Terapia Fototérmica/métodos , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos/métodos , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Lipossomos/química , Lipossomos/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica , Espectroscopia de Luz Próxima ao Infravermelho , Distribuição Tecidual
8.
J Control Release ; 297: 79-90, 2019 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-30659906

RESUMO

Tumour-specific, immuno-based therapeutic interventions can be considered as safe and effective approaches for cancer therapy. Exploitation of nano-vaccinology to intensify the cancer vaccine potency may overcome the need for administration of high vaccine doses or additional adjuvants and therefore could be a more efficient approach. Carbon nanotube (CNT) can be described as carbon sheet(s) rolled up into a cylinder that is nanometers wide and nanometers to micrometers long. Stemming from the observed capacities of CNTs to enter various types of cells via diversified mechanisms utilising energy-dependent and/or passive routes of cell uptake, the use of CNTs for the delivery of therapeutic agents has drawn increasing interests over the last decade. Here we review the previous studies that demonstrated the possible benefits of these cylindrical nano-vectors as cancer vaccine delivery systems as well as the obstacles their clinical application is facing.


Assuntos
Adjuvantes Imunológicos/química , Antineoplásicos/química , Vacinas Anticâncer/química , Portadores de Fármacos/química , Nanotubos de Carbono/química , Neoplasias/terapia , Adjuvantes Imunológicos/farmacologia , Animais , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Liberação Controlada de Fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/prevenção & controle , Propriedades de Superfície
9.
Biomaterials ; 104: 310-22, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27475727

RESUMO

Although anti-cancer immuno-based combinatorial therapeutic approaches have shown promising results, efficient tumour eradication demands further intensification of anti-tumour immune response. With the emerging field of nanovaccinology, multi-walled carbon nanotubes (MWNTs) have manifested prominent potentials as tumour antigen nanocarriers. Nevertheless, the utilization of MWNTs in co-delivering antigen along with different types of immunoadjuvants to antigen presenting cells (APCs) has not been investigated yet. We hypothesized that harnessing MWNT for concurrent delivery of cytosine-phosphate-guanine oligodeoxynucleotide (CpG) and anti-CD40 Ig (αCD40), as immunoadjuvants, along with the model antigen ovalbumin (OVA) could potentiate immune response induced against OVA-expressing tumour cells. We initially investigated the effective method to co-deliver OVA and CpG using MWNT to the APC. Covalent conjugation of OVA and CpG prior to loading onto MWNTs markedly augmented the CpG-mediated adjuvanticity, as demonstrated by the significantly increased OVA-specific T cell responses in vitro and in C57BL/6 mice. αCD40 was then included as a second immunoadjuvant to further intensify the immune response. Immune response elicited in vitro and in vivo by OVA, CpG and αCD40 was significantly potentiated by their co-incorporation onto the MWNTs. Furthermore, MWNT remarkably improved the ability of co-loaded OVA, CpG and αCD40 in inhibiting the growth of OVA-expressing B16F10 melanoma cells in subcutaneous or lung pseudo-metastatic tumour models. Therefore, this study suggests that the utilization of MWNTs for the co-delivery of tumour-derived antigen, CpG and αCD40 could be a competent approach for efficient tumours eradication.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Vacinas Anticâncer/administração & dosagem , Nanocápsulas/química , Nanotubos de Carbono/química , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Ovalbumina/administração & dosagem , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Linhagem Celular Tumoral , Imunoterapia/métodos , Camundongos , Nanocápsulas/administração & dosagem , Neoplasias Experimentais/patologia , Resultado do Tratamento
10.
J Control Release ; 225: 205-16, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26802552

RESUMO

Carbon nanotubes (CNTs) have shown marked capabilities in enhancing antigen delivery to antigen presenting cells. However, proper understanding of how altering the physical properties of CNTs may influence antigen uptake by antigen presenting cells, such as dendritic cells (DCs), has not been established yet. We hypothesized that altering the physical properties of multi-walled CNTs (MWNTs)-antigen conjugates, e.g. length and surface charge, can affect the internalization of MWNT-antigen by DCs, hence the induced immune response potency. For this purpose, pristine MWNTs (p-MWNTs) were exposed to various chemical reactions to modify their physical properties then conjugated to ovalbumin (OVA), a model antigen. The yielded MWNTs-OVA conjugates were long MWNT-OVA (~386nm), bearing net positive charge (5.8mV), or short MWNTs-OVA (~122nm) of increasing negative charges (-23.4, -35.8 or -39mV). Compared to the short MWNTs-OVA bearing high negative charges, short MWNT-OVA with the lowest negative charge demonstrated better cellular uptake and OVA-specific immune response both in vitro and in vivo. However, long positively-charged MWNT-OVA showed limited cellular uptake and OVA specific immune response in contrast to short MWNT-OVA displaying the least negative charge. We suggest that reduction in charge negativity of MWNT-antigen conjugate enhances cellular uptake and thus the elicited immune response intensity. Nevertheless, length of MWNT-antigen conjugate might also affect the cellular uptake and immune response potency; highlighting the importance of physical properties as a consideration in designing a MWNT-based vaccine delivery system.


Assuntos
Portadores de Fármacos/administração & dosagem , Nanotubos de Carbono , Vacinas/administração & dosagem , Animais , Antígenos/administração & dosagem , Antígenos/química , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Portadores de Fármacos/química , Feminino , Interferon gama/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanotubos de Carbono/química , Ovalbumina/administração & dosagem , Ovalbumina/química , Ovalbumina/farmacocinética , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Compostos de Sulfidrila/química , Propriedades de Superfície , Vacinas/química
11.
J Control Release ; 225: 217-29, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26809004

RESUMO

Brain glioblastoma and neurodegenerative diseases are still largely untreated due to the inability of most drugs to cross the blood-brain barrier (BBB). Nanoparticles have emerged as promising tools for drug delivery applications to the brain; in particular carbon nanotubes (CNTs) that have shown an intrinsic ability to cross the BBB in vitro and in vivo. Angiopep-2 (ANG), a ligand for the low-density lipoprotein receptor-related protein-1 (LRP1), has also shown promising results as a targeting ligand for brain delivery using nanoparticles (NPs). Here, we investigate the ability of ANG-targeted chemically-functionalised multi-walled carbon nanotubes (f-MWNTs) to cross the BBB in vitro and in vivo. ANG was conjugated to wide and thin f-MWNTs creating w-MWNT-ANG and t-MWNT-ANG, respectively. All f-MWNTs were radiolabelled to facilitate quantitative analyses by γ-scintigraphy. ANG conjugation to f-MWNTs enhanced BBB transport of w- and t-MWNTs-ANG compared to their non-targeted equivalents using an in vitro co-cultured BBB model consisting of primary porcine brain endothelial cells (PBEC) and primary rat astrocytes. Additionally, following intravenous administration w-MWNTs-ANG showed significantly higher whole brain uptake than the non-targeted w-MWNT in vivo reaching ~2% injected dose per g of brain (%ID/g) within the first hour post-injection. Furthermore, using a syngeneic glioma model, w-MWNT-ANG showed enhanced uptake in glioma brain compared to normal brain at 24h post-injection. t-MWNTs-ANG, on the other hand, showed higher brain accumulation than w-MWNTs. However, no significant differences were observed between t-MWNT and t-MWNT-ANG indicating the importance of f-MWNTs diameter towards their brain accumulation. The inherent brain accumulation ability of f-MWNTs coupled with improved brain-targeting by ANG favours the future clinical applications of f-MWNT-ANG to deliver active therapeutics for brain glioma therapy.


Assuntos
Encéfalo/metabolismo , Portadores de Fármacos/administração & dosagem , Nanotubos de Carbono , Peptídeos/administração & dosagem , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Astrócitos/metabolismo , Transporte Biológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Células Endoteliais/metabolismo , Feminino , Glioma/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/química , Peptídeos/química , Peptídeos/farmacocinética , Ratos Wistar , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA