Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 202(3): 465-480, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37365409

RESUMO

Wild honeybees (Apis mellifera) are considered extinct in most parts of Europe. The likely causes of their decline include increased parasite burden, lack of high-quality nesting sites and associated depredation pressure, and food scarcity. In Germany, feral honeybees still colonize managed forests, but their survival rate is too low to maintain viable populations. Based on colony observations collected during a monitoring study, data on parasite prevalence, experiments on nest depredation, and analyses of land cover maps, we explored whether parasite pressure, depredation or expected landscape-level food availability explain feral colony winter mortality. Considering the colony-level occurrence of 18 microparasites in the previous summer, colonies that died did not have a higher parasite burden than colonies that survived. Camera traps installed at cavity trees revealed that four woodpecker species, great tits, and pine martens act as nest depredators. In a depredator exclusion experiment, the winter survival rate of colonies in cavities with protected entrances was 50% higher than that of colonies with unmanipulated entrances. Landscapes surrounding surviving colonies contained on average 6.4 percentage points more cropland than landscapes surrounding dying colonies, with cropland being known to disproportionately provide forage for bees in our study system. We conclude that the lack of spacious but well-protected nesting cavities and the shortage of food are currently more important than parasites in limiting populations of wild-living honeybees in German forests. Increasing the density and diversity of large tree cavities and promoting bee forage plants in forests will probably promote wild-living honeybees despite parasite pressure.


Assuntos
Parasitos , Animais , Abelhas , Florestas , Europa (Continente) , Árvores , Alemanha
2.
Mol Biol Evol ; 38(2): 486-501, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32946576

RESUMO

Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our reliance on a handful of well-studied species for agricultural pollination particularly precarious. To broadly sample bumblebee genomic and phenotypic diversity, we de novo sequenced and assembled the genomes of 17 species, representing all 15 subgenera, producing the first genus-wide quantification of genetic and genomic variation potentially underlying key ecological and behavioral traits. The species phylogeny resolves subgenera relationships, whereas incomplete lineage sorting likely drives high levels of gene tree discordance. Five chromosome-level assemblies show a stable 18-chromosome karyotype, with major rearrangements creating 25 chromosomes in social parasites. Differential transposable element activity drives changes in genome sizes, with putative domestications of repetitive sequences influencing gene coding and regulatory potential. Dynamically evolving gene families and signatures of positive selection point to genus-wide variation in processes linked to foraging, diet and metabolism, immunity and detoxification, as well as adaptations for life at high altitudes. Our study reveals how bumblebee genes and genomes have evolved across the Bombus phylogeny and identifies variations potentially linked to key ecological and behavioral traits of these important pollinators.


Assuntos
Adaptação Biológica/genética , Abelhas/genética , Evolução Biológica , Genoma de Inseto , Animais , Uso do Códon , Elementos de DNA Transponíveis , Dieta , Comportamento Alimentar , Componentes do Gene , Tamanho do Genoma , Seleção Genética
3.
Insect Mol Biol ; 31(5): 593-608, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35524973

RESUMO

The gonads of honey bee, Apis mellifera, queens and drones are each composed of hundreds of serial units, the ovarioles and testioles, while the ovaries of the adult subfertile workers consist of only few ovarioles. We performed a comparative RNA-seq analysis on early fifth-instar (L5F1) larval gonads, which is a critical stage in gonad development of honey bee larvae. A total of 1834 genes were identified as differentially expressed (Padj < 0.01) among the three sex and caste phenotypes. The Gene Ontology analysis showed significant enrichment for metabolism, protein or ion binding, and oxidoreductase activity, and a KEGG analysis revealed metabolic pathways as enriched. In a principal component analysis for the total transcriptomes and hierarchical clustering of the DEGs, we found higher similarity between the queen and worker ovary transcriptomes compared to the drone testis, despite the onset of programmed cell death in the worker ovaries. Four DEGs were selected for RT-qPCR analyses, including their response to juvenile hormone (JH), which is a critical factor in the caste-specific development of the ovaries. Among these, DMRT A2 and Hsp83 were found upregulated by JH and, thus, emerged as potential molecular markers for sex- and caste-specific gonad development in honey bees.


Assuntos
Hormônios Juvenis , Transcriptoma , Animais , Feminino , Abelhas/genética , Hormônios Juvenis/metabolismo , Larva , Ovário/metabolismo
4.
BMC Biol ; 19(1): 94, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952283

RESUMO

BACKGROUND: The black soldier fly (Hermetia illucens) is the most promising insect candidate for nutrient-recycling through bioconversion of organic waste into biomass, thereby improving sustainability of protein supplies for animal feed and facilitating transition to a circular economy. Contrary to conventional livestock, genetic resources of farmed insects remain poorly characterised. We present the first comprehensive population genetic characterisation of H. illucens. Based on 15 novel microsatellite markers, we genotyped and analysed 2862 individuals from 150 wild and captive populations originating from 57 countries on seven subcontinents. RESULTS: We identified 16 well-distinguished genetic clusters indicating substantial global population structure. The data revealed genetic hotspots in central South America and successive northwards range expansions within the indigenous ranges of the Americas. Colonisations and naturalisations of largely unique genetic profiles occurred on all non-native continents, either preceded by demographically independent founder events from various single sources or involving admixture scenarios. A decisive primarily admixed Polynesian bridgehead population serially colonised the entire Australasian region and its secondarily admixed descendants successively mediated invasions into Africa and Europe. Conversely, captive populations from several continents traced back to a single North American origin and exhibit considerably reduced genetic diversity, although some farmed strains carry distinct genetic signatures. We highlight genetic footprints characteristic of progressing domestication due to increasing socio-economic importance of H. illucens, and ongoing introgression between domesticated strains globally traded for large-scale farming and wild populations in some regions. CONCLUSIONS: We document the dynamic population genetic history of a cosmopolitan dipteran of South American origin shaped by striking geographic patterns. These reflect both ancient dispersal routes, and stochastic and heterogeneous anthropogenic introductions during the last century leading to pronounced diversification of worldwide structure of H. illucens. Upon the recent advent of its agronomic commercialisation, however, current human-mediated translocations of the black soldier fly largely involve genetically highly uniform domesticated strains, which meanwhile threaten the genetic integrity of differentiated unique local resources through introgression. Our in-depth reconstruction of the contemporary and historical demographic trajectories of H. illucens emphasises benchmarking potential for applied future research on this emerging model of the prospering insect-livestock sector.


Assuntos
Dípteros , Ração Animal/análise , Animais , Demografia , Dípteros/genética , Genética Populacional , Humanos , Larva
5.
Heredity (Edinb) ; 126(1): 163-177, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32855546

RESUMO

When selection favours rare alleles over common ones (balancing selection in the form of negative frequency-dependent selection), a locus may maintain a large number of alleles, each at similar frequency. To better understand how allelic richness is generated and maintained at such loci, we assessed 201 sequences of the complementary sex determiner (csd) of the Asian honeybee (Apis cerana), sampled from across its range. Honeybees are haplodiploid; hemizygotes at csd develop as males and heterozygotes as females, while homozygosity is lethal. Thus, csd is under strong negative frequency-dependent selection because rare alleles are less likely to end up in the lethal homozygous form. We find that in A. cerana, as in other Apis, just a few amino acid differences between csd alleles in the hypervariable region are sufficient to trigger female development. We then show that while allelic lineages are spread across geographical regions, allelic differentiation is high between populations, with most csd alleles (86.3%) detected in only one sample location. Furthermore, nucleotide diversity in the hypervariable region indicates an excess of recently arisen alleles, possibly associated with population expansion across Asia since the last glacial maximum. Only the newly invasive populations of the Austral-Pacific share most of their csd alleles. In all, the geographic patterns of csd diversity in A. cerana indicate that high mutation rates and balancing selection act together to produce high rates of allele genesis and turnover at the honeybee sex locus, which in turn leads to its exceptionally high local and global polymorphism.


Assuntos
Alelos , Abelhas , Seleção Genética , Processos de Determinação Sexual , Animais , Ásia , Abelhas/genética , Feminino , Polimorfismo Genético
6.
J Bacteriol ; 202(3)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712283

RESUMO

The Na+ ion-translocating NADH:quinone oxidoreductase (NQR) from Vibrio cholerae is a membrane-bound respiratory enzyme which harbors flavins and Fe-S clusters as redox centers. The NQR is the main producer of the sodium motive force (SMF) and drives energy-dissipating processes such as flagellar rotation, substrate uptake, ATP synthesis, and cation-proton antiport. The NQR requires for its maturation, in addition to the six structural genes nqrABCDEF, a flavin attachment gene, apbE, and the nqrM gene, presumably encoding a Fe delivery protein. We here describe growth studies and quantitative real-time PCR for the V. cholerae O395N1 wild-type (wt) strain and its mutant Δnqr and ΔubiC strains, impaired in respiration. In a comparative proteome analysis, FeoB, the membrane subunit of the uptake system for Fe2+ (Feo), was increased in V. choleraeΔnqr In this study, the upregulation was confirmed on the mRNA level and resulted in improved growth rates of V. choleraeΔnqr with Fe2+ as an iron source. We studied the expression of feoB on other respiratory enzyme deletion mutants such as the ΔubiC mutant to determine whether iron transport is specific to the absence of NQR resulting from impaired respiration. We show that the nqr operon comprises, in addition to the structural nqrABCDEF genes, the downstream apbE and nqrM genes on the same operon and demonstrate induction of the nqr operon by iron in V. cholerae wt. In contrast, expression of the nqrM gene in V. choleraeΔnqr is repressed by iron. The lack of functional NQR has a strong impact on iron homeostasis in V. cholerae and demonstrates that central respiratory metabolism is interwoven with iron uptake and regulation.IMPORTANCE Investigating strategies of iron acquisition, storage, and delivery in Vibrio cholerae is a prerequisite to understand how this pathogen thrives in hostile, iron-limited environments such as the human host. In addition to highlighting the maturation of the respiratory complex NQR, this study points out the influence of NQR on iron metabolism, thereby making it a potential drug target for antibiotics.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Quinona Redutases/metabolismo , Vibrio cholerae/enzimologia , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Mutação/genética , Oxirredução , Quinona Redutases/genética , Vibrio cholerae/genética
7.
Mol Ecol ; 29(5): 912-919, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32034824

RESUMO

Due to the combined effects of global warming and eutrophication, the frequency of deleterious cyanobacterial blooms in freshwater ecosystems has increased. In line with this, local adaptation of the aquatic keystone herbivore Daphnia to cyanobacteria has received major attention. Besides microcystins, the most frequent cyanobacterial secondary metabolites in such blooms are protease inhibitors (PIs). Recently, it has been shown that a protease gene showed copy number variation between four D. magna populations that differed in tolerance to PIs. From that study, we chose two distinct populations of D. magna which had or had not coexisted with cyanobacteria in the past. By calculating FST values, we found that the two populations were genetically more distant in the protease loci than in neutral loci. Population genetic tests applied to the tolerant population revealed that positive selection was most probably acting on the gene loci of the digestive protease CT448 and CT802. We conclude that the selection of digestive proteases and subsequent reduction in copy number is the molecular basis of evolutionary changes leading to local adaptation to PIs.


Assuntos
Aclimatação , Cianobactérias/química , Daphnia/enzimologia , Peptídeo Hidrolases/genética , Inibidores de Proteases/química , Sequência de Aminoácidos , Animais , Variações do Número de Cópias de DNA , Daphnia/genética , Água Doce , Genética Populacional , Genótipo , Polônia , Seleção Genética , Suécia
8.
PLoS Genet ; 13(5): e1006792, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542163

RESUMO

Understanding the genetic basis of adaption is a central task in biology. Populations of the honey bee Apis mellifera that inhabit the mountain forests of East Africa differ in behavior and morphology from those inhabiting the surrounding lowland savannahs, which likely reflects adaptation to these habitats. We performed whole genome sequencing on 39 samples of highland and lowland bees from two pairs of populations to determine their evolutionary affinities and identify the genetic basis of these putative adaptations. We find that in general, levels of genetic differentiation between highland and lowland populations are very low, consistent with them being a single panmictic population. However, we identify two loci on chromosomes 7 and 9, each several hundred kilobases in length, which exhibit near fixation for different haplotypes between highland and lowland populations. The highland haplotypes at these loci are extremely rare in samples from the rest of the world. Patterns of segregation of genetic variants suggest that recombination between haplotypes at each locus is suppressed, indicating that they comprise independent structural variants. The haplotype on chromosome 7 harbors nearly all octopamine receptor genes in the honey bee genome. These have a role in learning and foraging behavior in honey bees and are strong candidates for adaptation to highland habitats. Molecular analysis of a putative breakpoint indicates that it may disrupt the coding sequence of one of these genes. Divergence between the highland and lowland haplotypes at both loci is extremely high suggesting that they are ancient balanced polymorphisms that greatly predate divergence between the extant honey bee subspecies.


Assuntos
Adaptação Fisiológica/genética , Abelhas/genética , Haplótipos/genética , Receptores de Amina Biogênica/genética , Altitude , Animais , Abelhas/fisiologia , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Polimorfismo Genético
10.
Mol Biol Evol ; 31(2): 272-87, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24170493

RESUMO

Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116-145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene.


Assuntos
Abelhas/genética , Genes de Insetos/genética , Variação Genética , Processos de Determinação Sexual/genética , Alelos , Sequência de Aminoácidos , Animais , Evolução Biológica , Evolução Molecular , Feminino , Aptidão Genética , Quênia , Masculino , Repetições de Microssatélites , Modelos Genéticos , Nucleotídeos/genética , Filogenia , Seleção Genética
11.
Nature ; 454(7203): 519-22, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18594516

RESUMO

Sex determination in honeybees (Apis mellifera) is governed by heterozygosity at a single locus harbouring the complementary sex determiner (csd) gene, in contrast to the well-studied sex chromosome system of Drosophila melanogaster. Bees heterozygous at csd are females, whereas homozygotes and hemizygotes (haploid individuals) are males. Although at least 15 different csd alleles are known among natural bee populations, the mechanisms linking allelic interactions to switching of the sexual development programme are still obscure. Here we report a new component of the sex-determining pathway in honeybees, encoded 12 kilobases upstream of csd. The gene feminizer (fem) is the ancestrally conserved progenitor gene from which csd arose and encodes an SR-type protein, harbouring an Arg/Ser-rich domain. Fem shares the same arrangement of Arg/Ser- and proline-rich-domain with the Drosophila principal sex-determining gene transformer (tra), but lacks conserved motifs except for a 30-amino-acid motif that Fem shares only with Tra of another fly, Ceratitis capitata. Like tra, the fem transcript is alternatively spliced. The male-specific splice variant contains a premature stop codon and yields no functional product, whereas the female-specific splice variant encodes the functional protein. We show that RNA interference (RNAi)-induced knockdowns of the female-specific fem splice variant result in male bees, indicating that the fem product is required for entire female development. Furthermore, RNAi-induced knockdowns of female allelic csd transcripts result in the male-specific fem splice variant, suggesting that the fem gene implements the switch of developmental pathways controlled by heterozygosity at csd. Comparative analysis of fem and csd coding sequences from five bee species indicates a recent origin of csd in the honeybee lineage from the fem progenitor and provides evidence for positive selection at csd accompanied by purifying selection at fem. The fem locus in bees uncovers gene duplication and positive selection as evolutionary mechanisms underlying the origin of a novel sex determination pathway.


Assuntos
Abelhas/genética , Abelhas/fisiologia , Evolução Molecular , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Processos de Determinação Sexual , Alelos , Processamento Alternativo , Substituição de Aminoácidos , Animais , Abelhas/embriologia , Feminino , Genoma , Heterozigoto , Homozigoto , Proteínas de Insetos/química , Masculino , Dados de Sequência Molecular
12.
Sci Rep ; 14(1): 4263, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383537

RESUMO

Anthropogenic activities like trade facilitate increasing rates of biological invasions. Asian long-horned beetle (ALB), which is naturally distributed in eastern Asia (China, Korean peninsula), was introduced via wood packing materials (WPM) used in trade to North America (1996) and Europe (2001). We used 7810 single nucleotide polymorphisms (SNPs) derived by a genotype-by-sequencing (GBS) approach to decipher the introduction patterns into Europe. This is applied for the first time on European ALB outbreaks from Germany, Switzerland, and Italy, both from still active and already eradicated infestations. The genome-wide SNPs detected signs of small and highly structured populations within Europe, showing clear founder effects. The very high population differentiation is presumably derived from multiple independent introductions to Europe, which are spatially restricted in mating. By admixture and phylogenetic analyses, some cases of secondary dispersal were observed. Furthermore, some populations suggest admixture, which might have been originated by either multiple introductions from different sources into the new sites or recurrent introductions from an admixed source population. Our results confirmed a complex invasion history of the ALB into Europe and the usability of GBS obtained SNPs in invasion science even without source populations.


Assuntos
Besouros , Metagenômica , Animais , Filogenia , Europa (Continente) , Besouros/genética , Genótipo
13.
Ecol Evol ; 14(6): e11595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919649

RESUMO

A sustainable solution to the global threat of the Varroa destructor mite is the selection of varroa-resistant honey bee (Apis mellifera) colonies. Both "mite non-reproduction" (MNR) and "varroa sensitive hygiene" (VSH) appear to be promising selection traits for achieving the goal of a resistant honey bee. MNR describes colonies that have a high number of non-reproductive mites (no offspring, no males, or delayed development of mite offspring). High numbers of non-reproductive mites have been observed in selected colonies, but the mechanism behind this trait has not yet been identified. The specialized hygienic behavior of selected honey bees, called VSH, is the removal of varroa-infested brood. These traits were thought to be linked by VSH bees preferentially removing reproductive varroa females leaving only non-reproductive mites behind in cells and thus creating colonies with high levels of MNR. To further investigate this link, we used an experimental setup and data sets from a four-year selection project designed to breed for MNR and VSH colonies. In addition, we sought to answer the question of whether non-reproductive mites are a direct consequence of worker removal behavior. To test this, we artificially induced removal behavior, and after providing the mite with enough time to re-enter another cell, we opened all capped cells, relocated the mites, and evaluated their reproduction. As shown in previous studies and in this study, VSH had no effect on MNR levels. Also, the induced removal behavior did not lead to non-reproduction in the subsequent reproductive cycle post interruption. We thus concluded that breeding for non-reproductive mites does not automatically breed for VSH behavior and worker removal behavior does not cause subsequent reproductive failure of the mites forced to flee and find a new cell for reproduction.

14.
Proc Natl Acad Sci U S A ; 107(30): 13378-83, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20624976

RESUMO

The most remarkable outcome of a gene duplication event is the evolution of a novel function. Little information exists on how the rise of a novel function affects the evolution of its paralogous sister gene copy, however. We studied the evolution of the feminizer (fem) gene from which the gene complementary sex determiner (csd) recently derived by tandem duplication within the honey bee (Apis) lineage. Previous studies showed that fem retained its sex determination function, whereas the rise of csd established a new primary signal of sex determination. We observed a specific reduction of nonsynonymous to synonymous substitution ratios in Apis to non-Apis fem. We found a contrasting pattern at two other genetically linked genes, suggesting that hitchhiking effects to csd, the locus under balancing selection, is not the cause of this evolutionary pattern. We also excluded higher synonymous substitution rates by relative rate testing. These results imply that stronger purifying selection is operating at the fem gene in the presence of csd. We propose that csd's new function interferes with the function of Fem protein, resulting in molecular constraints and limited evolvability of fem in the Apis lineage. Elevated silent nucleotide polymorphism in fem relative to the genome-wide average suggests that genetic linkage to the csd gene maintained more nucleotide variation in today's population. Our findings provide evidence that csd functionally and genetically interferes with fem, suggesting that a newly evolved gene and its functions can limit the evolutionary capability of other genes in the genome.


Assuntos
Abelhas/genética , Evolução Molecular , Duplicação Gênica , Genes de Insetos/genética , Proteínas de Insetos/genética , Animais , Abelhas/classificação , Éxons/genética , Feminino , Variação Genética , Proteínas de Insetos/classificação , Íntrons/genética , Masculino , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Seleção Genética , Especificidade da Espécie
15.
Sci Rep ; 13(1): 5921, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041178

RESUMO

The honey bee, Apis mellifera differs from all other social bees in its gonad phenotype and mating strategy. Honey bee queens and drones have tremendously enlarged gonads, and virgin queens mate with several males. In contrast, in all the other bees, the male and female gonads are small, and the females mate with only one or very few males, thus, suggesting an evolutionary and developmental link between gonad phenotype and mating strategy. RNA-seq comparisons of A. mellifera larval gonads revealed 870 genes as differentially expressed in queens versus workers and drones. Based on Gene Ontology enrichment we selected 45 genes for comparing the expression levels of their orthologs in the larval gonads of the bumble bee Bombus terrestris and the stingless bee, Melipona quadrifasciata, which revealed 24 genes as differentially represented. An evolutionary analysis of their orthologs in 13 solitary and social bee genomes revealed four genes with evidence of positive selection. Two of these encode cytochrome P450 proteins, and their gene trees indicated a lineage-specific evolution in the genus Apis, indicating that cytochrome P450 genes may be involved in the evolutionary association of polyandry and the exaggerated gonad phenotype in social bees.


Assuntos
Comunicação Celular , Reprodução , Masculino , Feminino , Abelhas , Animais , Larva , Gônadas
16.
PLoS Biol ; 7(10): e1000222, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19841734

RESUMO

Organisms have evolved a bewildering diversity of mechanisms to generate the two sexes. The honeybee (Apis mellifera) employs an interesting system in which sex is determined by heterozygosity at a single locus (the Sex Determination Locus) harbouring the complementary sex determiner (csd) gene. Bees heterozygous at Sex Determination Locus are females, whereas bees homozygous or hemizygous are males. Little is known, however, about the regulation that links sex determination to sexual differentiation. To investigate the control of sexual development in honeybees, we analyzed the functions and the regulatory interactions of genes involved in the sex determination pathway. We show that heterozygous csd is only required to induce the female pathway, while the feminizer (fem) gene maintains this decision throughout development. By RNAi induced knockdown we show that the fem gene is essential for entire female development and that the csd gene exclusively processes the heterozygous state. Fem activity is also required to maintain the female determined pathway throughout development, which we show by mosaic structures in fem-repressed intersexuals. We use expression of Fem protein in males to demonstrate that the female maintenance mechanism is controlled by a positive feedback splicing loop in which Fem proteins mediate their own synthesis by directing female fem mRNA splicing. The csd gene is only necessary to induce this positive feedback loop in early embryogenesis by directing splicing of fem mRNAs. Finally, fem also controls the splicing of Am-doublesex transcripts encoding conserved male- and female-specific transcription factors involved in sexual differentiation. Our findings reveal how the sex determination process is realized in honeybees differing from Drosophila melanogaster.


Assuntos
Abelhas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Processos de Determinação Sexual , Diferenciação Sexual , Animais , Abelhas/genética , Feminino , Heterozigoto , Homozigoto , Proteínas de Insetos/metabolismo , Masculino , Diferenciação Sexual/genética
17.
PLoS One ; 17(6): e0270550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749523

RESUMO

Mitochondria and the energy metabolism are linked to both, the availability of Ca and P to provide the eukaryotic cell with energy. Both minerals are commonly used supplements in the feed of laying hens but little is known about the relationship between the feed content, energy metabolism and genetic background. In this study, we provide a large-scaled gene expression analysis of 31 mitochondrial and nuclear encoded genes in 80 laying hens in the context of dietary P and Ca concentrations. The setup included five tissues and gene expression was analysed under four different diets of recommended and reduced Ca and P concentrations. Our study shows, that mitochondrial gene expression is reacting to a reduction in P and that an imbalance of the nutrients has a higher impact than a combined reduction. The results suggest, that both strains (Lohmann Brown and Lohmann Selected Leghorn) react in a similar way to the changes and that a reduction of both nutrients might be possible without crucial influence on the animals' health or gene expression.


Assuntos
Cálcio da Dieta , Fósforo na Dieta , Ração Animal/análise , Animais , Cálcio da Dieta/metabolismo , Galinhas/genética , Galinhas/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Feminino , Expressão Gênica , Oviposição , Fósforo/metabolismo , Fósforo/farmacologia , Fósforo na Dieta/metabolismo
18.
PLoS One ; 17(1): e0262613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025974

RESUMO

The cellular energy metabolism is one of the most conserved processes, as it is present in all living organisms. Mitochondria are providing the eukaryotic cell with energy and thus their genome and gene expression has been of broad interest for a long time. Mitochondrial gene expression changes under different conditions and is regulated by genes encoded in the nucleus of the cell. In this context, little is known about non-model organisms and we provide the first large-scaled gene expression analysis of mitochondrial-linked genes in laying hens. We analysed 28 mitochondrial and nuclear genes in 100 individuals in the context of five life-stages and strain differences among five tissues. Our study showed that mitochondrial gene expression increases during the productive life span, and reacts tissue and strain specific. In addition, the strains react different to potential increased oxidative stress, resulting from the increase in mitochondrial gene expression. The results suggest that the cellular energy metabolism as part of a complex regulatory system is strongly affected by the productive life span in laying hens and thus partly comparable to model organisms. This study provides a starting point for further analyses in this field on non-model organisms, especially in laying-hens.


Assuntos
Galinhas/genética , DNA Mitocondrial/genética , Transcriptoma/genética , Animais , Metabolismo Energético/genética , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Estresse Oxidativo/genética , Aves Domésticas/genética
19.
iScience ; 25(5): 104335, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35602967

RESUMO

Cytoplasmic incompatibility (CI) is a form of reproductive manipulation caused by maternally inherited endosymbionts infecting arthropods, like Wolbachia, whereby matings between infected males and uninfected females produce few or no offspring. We report the discovery of a new CI symbiont, a strain of Spiroplasma causing CI in the parasitoid wasp Lariophagus distinguendus. Its extracellular occurrence enabled us to establish CI in uninfected adult insects by transferring Spiroplasma-infected hemolymph. We sequenced the CI-Spiroplasma genome and did not find any homologues of any of the cif genes discovered to cause CI in Wolbachia, suggesting independent evolution of CI. Instead, the genome contains other potential CI-causing candidate genes, such as homologues of high-mobility group (HMG) box proteins that are crucial in eukaryotic development but rare in bacterial genomes. Spiroplasma's extracellular nature and broad host range encompassing medically and agriculturally important arthropods make it a promising tool to study CI and its applications.

20.
Insects ; 12(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668715

RESUMO

The diversity and local differentiation of honey bees are subjects of broad general interest. In particular, the classification of Ethiopian honey bees has been a subject of debate for decades. Here, we conducted an integrated analysis based on classical morphometrics and a putative nuclear marker (denoted r7-frag) for elevational adaptation to classify and characterize these honey bees. Therefore, 660 worker bees were collected out of 66 colonies from highland, midland and lowland agro-ecological zones (AEZs) and were analyzed in reference to populations from neighboring countries. Multivariate morphometric analyses show that our Ethiopian samples are separate from Apis mellifera scutellata, A. m. jemenitica, A. m. litorea and A. m. monticola, but are closely related to A. m. simensis reference. Linear discriminant analysis showed differentiation according to AEZs in the form of highland, midland and lowland ecotypes. Moreover, size was positively correlated with elevation. Similarly, our Ethiopian samples were differentiated from A. m. monticola and A. m. scutellata based on r7-frag. There was a low tendency towards genetic differentiation between the Ethiopian samples, likely impacted by increased gene flow. However, the differentiation slightly increased with increasing elevational differences, demonstrated by the highland bees that showed higher differentiation from the lowland bees (FST = 0.024) compared to the midland bees (FST = 0.015). An allelic length polymorphism was detected (denoted as d) within r7-frag, showing a patterned distribution strongly associated with AEZ (X2 = 11.84, p < 0.01) and found predominantly in highland and midland bees of some pocket areas. In conclusion, the Ethiopian honey bees represented in this study are characterized by high gene flow that suppresses differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA