Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 22420, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341882

RESUMO

Migration is one of the most extreme and energy demanding life history strategies to have evolved in the animal kingdom. In birds, champions of long-distance migrations, the seasonal emergence of the migratory phenotype is characterised by rapid physiological and metabolic remodelling, including substantial accumulation of fat stores and increases in nocturnality. The molecular underpinnings and brain adaptations to seasonal migrations remain poorly understood. Here, we exposed Common quails (Coturnix coturnix) to controlled changes in day length to simulate southward autumn migration, and then blocked the photoperiod until birds entered the non-migratory wintering phase. We first performed de novo RNA-Sequencing from selected brain samples (hypothalamus) collected from birds at a standardised time at night, either in a migratory state (when restlessness was highest and at their body mass peak), or in a non-migratory state and conducted differential gene expression and functional pathways analyses. We found that the migratory state was associated with up-regulation of a few, yet functionally well defined, gene expression networks implicated in fat trafficking, protein and carbohydrate metabolism. Further analyses that focused on candidate genes (apolipoprotein H or APOH, lysosomal associated membrane protein-2 or LAMP2) from samples collected during the day or night across the entire study population suggested differences in the expression of these genes depending on the time of the day with the largest expression levels being found in the migratory birds sampled at night. We also found that expression of APOH was positively associated with levels of nocturnal activity in the migratory birds; such an association was absent within the non-migratory birds. Our results provide novel experimental evidence revealing that hypothalamic changes in expression of apolipoprotein pathways, which regulate the circulatory transport of lipids, are likely key regulatory activators of nocturnal migratory movements. Our study paves the way for performing deeper functional investigations on seasonal molecular remodelling underlying the development of the migratory phenotype.


Assuntos
Migração Animal , Encéfalo , Animais , Migração Animal/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Fotoperíodo , Coturnix/genética , Coturnix/metabolismo , Coturnix/fisiologia , Estações do Ano , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Hipotálamo/metabolismo
2.
iScience ; 27(1): 108619, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38155774

RESUMO

We found major seasonal changes of polyunsaturated fatty acids (PUFAs) in muscular phospholipids (PL) in a large non-hibernating mammal, the red deer (Cervus elaphus). Dietary supply of essential linoleic acid (LA) and α-linolenic acid (ALA) had no, or only weak influence, respectively. We further found correlations of PL PUFA concentrations with the activity of key metabolic enzymes, independent of higher winter expression. Activity of the sarcoplasmic reticulum (SR) Ca++-ATPase increased with SR PL concentrations of n-6 PUFA, and of cytochrome c oxidase and citrate synthase, indicators of ATP-production, with concentrations of eicosapentaenoic acid in mitochondrial PL. All detected cyclic molecular changes were controlled by photoperiod and are likely of general relevance for mammals living in seasonal environments, including humans. During winter, these changes at the molecular level presumably compensate for Arrhenius effects in the colder peripheral body parts and thus enable a thrifty life at lower body temperature.

3.
Sci Rep ; 7: 41417, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176810

RESUMO

The black rhinoceros is again on the verge of extinction due to unsustainable poaching in its native range. Despite a wide historic distribution, the black rhinoceros was traditionally thought of as depauperate in genetic variation, and with very little known about its evolutionary history. This knowledge gap has hampered conservation efforts because hunting has dramatically reduced the species' once continuous distribution, leaving five surviving gene pools of unknown genetic affinity. Here we examined the range-wide genetic structure of historic and modern populations using the largest and most geographically representative sample of black rhinoceroses ever assembled. Using both mitochondrial and nuclear datasets, we described a staggering loss of 69% of the species' mitochondrial genetic variation, including the most ancestral lineages that are now absent from modern populations. Genetically unique populations in countries such as Nigeria, Cameroon, Chad, Eritrea, Ethiopia, Somalia, Mozambique, Malawi and Angola no longer exist. We found that the historic range of the West African subspecies (D. b. longipes), declared extinct in 2011, extends into southern Kenya, where a handful of individuals survive in the Masai Mara. We also identify conservation units that will help maintain evolutionary potential. Our results suggest a complete re-evaluation of current conservation management paradigms for the black rhinoceros.


Assuntos
Evolução Biológica , Conservação dos Recursos Naturais , Perissodáctilos/genética , África Subsaariana , Animais , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Variação Genética , Haplótipos/genética , Repetições de Microssatélites/genética , Mitocôndrias/genética , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA