Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12807, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550465

RESUMO

Labile copper(II) ions (Cu2+) in serum are considered to be readily available for cellular uptake and to constitute the biologically active Cu2+ species in the blood. It might also be suitable to reflect copper dyshomeostasis during diseases such as Wilson's disease (WD) or neurological disorders. So far, no direct quantification method has been described to determine this small Cu2+ subset. This study introduces a fluorometric high throughput assay using the novel Cu2+ binding fluoresceine-peptide sensor FP4 (Kd of the Cu2+-FP4-complex 0.38 pM) to determine labile Cu2+ in human and rat serum. Using 96 human serum samples, labile Cu2+was measured to be 0.14 ± 0.05 pM, showing no correlation with age or other serum trace elements. No sex-specific differences in labile Cu2+ concentrations were noted, in contrast to the total copper levels in serum. Analysis of the effect of drug therapy on labile Cu2+ in the sera of 19 patients with WD showed a significant decrease in labile Cu2+ following copper chelation therapy, suggesting that labile Cu2+ may be a specific marker of disease status and that the assay could be suitable for monitoring treatment progress.


Assuntos
Degeneração Hepatolenticular , Oligoelementos , Humanos , Ratos , Animais , Cobre/metabolismo , Degeneração Hepatolenticular/metabolismo , Fluorometria , Íons
2.
Nutrients ; 14(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406020

RESUMO

Free zinc is considered to be the exchangeable and biological active form of zinc in serum, and is discussed to be a suitable biomarker for alterations in body zinc homeostasis and related diseases. Given that coronavirus disease 2019 (COVID-19) is characterized by a marked decrease in total serum zinc, and clinical data indicate that zinc status impacts the susceptibility and severity of the infection, we hypothesized that free zinc in serum might be altered in response to SARS-CoV-2 infection and may reflect disease severity. To test this hypothesis, free zinc concentrations in serum samples of survivors and nonsurvivors of COVID-19 were analyzed by fluorometric microassay. Similar to the reported total serum zinc deficit measured by total reflection X-ray fluorescence, free serum zinc in COVID-19 patients was considerably lower than that in control subjects, and surviving patients displayed significantly higher levels of free zinc than those of nonsurvivors (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0004). In contrast to recovering total zinc concentrations (r = 0.706, p < 0.001) or the declining copper−zinc ratio (r = −0.646; p < 0.001), free zinc concentrations remained unaltered with time in COVID-19 nonsurvivors. Free serum zinc concentrations were particularly low in male as compared to female patients (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0003). This is of particular interest, as the male sex is described as a risk factor for severe COVID-19. Overall, results indicate that depressed free serum zinc levels are associated with increased risk of death in COVID-19, suggesting that free zinc may serve as a novel prognostic marker for the severity and course of COVID-19.


Assuntos
COVID-19 , Biomarcadores , Feminino , Humanos , Masculino , SARS-CoV-2 , Índice de Gravidade de Doença , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA