Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(20): 3947-3956, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38729915

RESUMO

Understanding structure-property relationships in atomically precise metal nanoclusters is vital in finding selective and tunable catalysts. In this study, density functional theory (DFT) was used to benchmark seven exchange correlation functionals at different basis sets for 17 atomically precise nanoclusters against experimentally determined geometries, band gaps, and optical gaps. The set contains both monometallic and bimetallic clusters that possess at least two types of 3d transition metals (specifically, Cu, Ni, Fe, or Co). The benchmark highlights that PBE0 is a good functional to use regardless of the basis set, and Minnesota functionals do well with respect to specific metals. Further, while long-range corrected functionals overestimate band and optical gaps, they model absorption features better than the other considered functionals. The study additionally looks at the photoinduced hydrogen evolution reaction (HER) and the CO2 reduction mechanism on nanoclusters reported from the literature.

2.
Faraday Discuss ; 242(0): 464-477, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36222075

RESUMO

Developments in nanotechnology have made the creation of functionalized materials with atomic precision possible. Thiolate-protected gold nanoclusters, in particular, have become the focus of study in literature as they possess high stability and have tunable structure-property relationships. In addition to adjustments in properties due to differences in size and shape, heteroatom doping has become an exciting way to tune the properties of these systems by mixing different atomic d characters from transition metal atoms. Au24Pt(SR)18 clusters, notably, have shown incredible catalytic properties, but fall short in the field of photochemistry. The influence of the Pt dopant on the photoluminescence mechanism and excited state dynamics has been investigated by a few experimental groups, but the origin of the differences that arise due to doping has not been clarified thoroughly. In this paper, density functional theory methods are used to analyze the geometry, optical and photoluminescent properties of Au24Pt(SR)18 in comparison with those of [Au25(SR)18]1-. Furthermore, as these clusters have shown slightly different geometric and optical properties for different ligands, the analysis is completed with both hydrogen and propyl ligands in order to ascertain the role of the passivating ligands.

3.
J Phys Chem A ; 127(47): 9932-9943, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37966050

RESUMO

Alkynyl-protected gold clusters have recently gained attention because they are more structurally versatile than their thiolate-protected counterparts. Despite their flexibility, however, a higher photoluminescent quantum yield (PLQY) has been observed experimentally compared to that of organically soluble thiolate-protected clusters. Previous experiments have shown that changing the organic ligand, or R group, in these clusters does not affect the geometric or electronic properties of the core, leading to a similar absorption profile. This article serves as a follow-up to those experiments in which the geometric, optical, and photoluminescent (PL) properties of Au22(ETP)18 are pieced together to find the photoluminescence mechanism. These properties are then compared between Au22(C≡CR)18 clusters where the ligand is changed from R = ETP to PA and ET (ETP = 3-ethynylthiophene, PA = phenylacetylene, and ET = 3-ethynyltoluene). As the theoretical results do not reproduce the same absorption profile among the different ligands as in the experiment, this article also presents a supplementary benchmark of the geometric and optical properties among the three ligands for different levels of theory. The calculations show that the photoluminescence mechanism with the ETP ligand results in ligand-to-metal-to-metal charge transfer (LMMCT), while PA and ET are likely a result of core-dominated fluorescence. The changes are the result of the Au(I) ring atoms as well as how the aromatic groups are connected to the cluster. Additionally, dispersion, solvent, and polarization functions are all important to creating an accurate chemical environment, but the most useful tool in these calculations is the use of a long-range-corrected exchange-correlation functional.

4.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37290069

RESUMO

Understanding photoluminescent mechanisms has become essential for photocatalytic, biological, and electronic applications. Unfortunately, analyzing excited state potential energy surfaces (PESs) in large systems is computationally expensive, and hence limited with electronic structure methods such as time-dependent density functional theory (TDDFT). Inspired by the sTDDFT and sTDA methods, time-dependent density functional theory plus tight binding (TDDFT + TB) has been shown to reproduce linear response TDDFT results much faster than TDDFT, particularly in large nanoparticles. For photochemical processes, however, methods must go beyond the calculation of excitation energies. Herein, this work outlines an analytical approach to obtain the derivative of the vertical excitation energy in TDDFT + TB for more efficient excited state PES exploration. The gradient derivation is based on the Z vector method, which utilizes an auxiliary Lagrangian to characterize the excitation energy. The gradient is obtained when the derivatives of the Fock matrix, the coupling matrix, and the overlap matrix are all plugged into the auxiliary Lagrangian, and the Lagrange multipliers are solved. This article outlines the derivation of the analytical gradient, discusses the implementation in Amsterdam Modeling Suite, and provides proof of concept by analyzing the emission energy and optimized excited state geometry calculated by TDDFT and TDDFT + TB for small organic molecules and noble metal nanoclusters.


Assuntos
Teoria Quântica , Teoria da Densidade Funcional
5.
J Am Chem Soc ; 144(1): 478-484, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34957826

RESUMO

We report the first example of a chiral mixed thiolate/stibine-protected gold cluster, formulated as Au18(S-Adm)8(SbPh3)4Br2 (where S-Adm = 1-adamantanethiolate). Single crystal X-ray crystallography reveals the origin of chirality in the cluster to be the introduction of the rotating arrangement of Au2(S-Adm)3 and Au(S-Adm)2 staple motifs on an achiral Au13 core and the subsequent capping of the remaining gold atoms by SbPh3 and Br- ligands. Interestingly, the structure and properties of this new Au18 cluster are found to be different from other reported achiral Au18 clusters and the only other stibine-protected [Au13(SbPh3)8Cl4]+ cluster. Detailed analyses on the geometric and electronic structures of the new cluster are carried out to gain insights into its optical properties as well as reactivity and stability of such mixed monolayer-protected clusters.

6.
J Am Chem Soc ; 144(40): 18305-18314, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36169057

RESUMO

Silver nanoclusters have emerged as promising candidates for optoelectronic applications, but their room-temperature photoluminescence quantum yield (PLQY) is far from ideal to access cutting-edge device performance. Herein, two supertetrahedral silver nanoclusters with high PLQY in non-degassed solution at room temperature were constructed by interiorly supporting the core with multiple VO43- and E2- anions as structure-directing agents and exteriorly protecting the core with a rigid ligand shell of PhC≡C- and Ph2PE2- (E = S, Ag64-S; E = Se, Ag64-Se). Both clusters have similar outer Ag58 tetrahedral cages and [Ag6E4@(VO4)4] cores, forming a pair of comparable clusters to decrypt the origin of such a high PLQY, particularly in Ag64-S, where the PLQY reached up to 97%. The stronger suppression effect of inner sulfides for nonradiative decay is critical to boost the PLQY to near unity. Transient absorption spectroscopy is employed to confirm the phosphorescence nature. The quadruple-capping assembly mechanism involving Ag7 secondary building units on a Ag36 truncated tetrahedron was also established by collision-induced dissociation studies. This work not only provides a strategy of core engineering for the controlled syntheses of silver nanoclusters with high PLQY but also deciphers the origin of a near-unity PLQY, which lays a foundation for fabricating highly phosphorescent silver nanoclusters in the future.

7.
J Am Chem Soc ; 143(25): 9405-9414, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34138547

RESUMO

A ligand exchange strategy has been employed to understand the role of ligands on the structural and optical properties of atomically precise 29 atom silver nanoclusters (NCs). By ligand optimization, ∼44-fold quantum yield (QY) enhancement of Ag29(BDT)12-x(DHLA)x NCs (x = 1-6) was achieved, where BDT and DHLA refer to 1,3-benzene-dithiol and dihydrolipoic acid, respectively. High-resolution mass spectrometry was used to monitor ligand exchange, and structures of the different NCs were obtained through density functional theory (DFT). The DFT results from Ag29(BDT)11(DHLA) NCs were further experimentally verified through collisional cross-section (CCS) analysis using ion mobility mass spectrometry (IM MS). An excellent match in predicted CCS values and optical properties with the respective experimental data led to a likely structure of Ag29(DHLA)12 NCs consisting of an icosahedral core with an Ag16S24 shell. Combining the experimental observation with DFT structural analysis of a series of atomically precise NCs, Ag29-yAuy(BDT)12-x(DHLA)x (where y, x = 0,0; 0,1; 0,12 and 1,12; respectively), it was found that while the metal core is responsible for the origin of photoluminescence (PL), ligands play vital roles in determining their resultant PLQY.

8.
J Chem Phys ; 155(7): 074302, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418928

RESUMO

Determining excited state processes for small nanoclusters, specifically gold, aids in our ability to fine-tune luminescent materials and optical devices. Using TDDFT and TDDFT + TB, we present a detailed theoretical explanation for the dual emission peaks displayed in Au14Cd(S-Adm)12 (Adm = adamantane). As dual emission is relatively rare, we decipher whether the mechanism originates from two different excited states or from two different minima on the same excited state surface. This unique mechanism, which proposes that the dual emission results from two minima on the first excited state, stems from geometrical changes in the bi-tetrahedron core during the emission process.

9.
Anal Chem ; 90(16): 9990-9996, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30027740

RESUMO

Solid supported colorimetric sensing arrays have the advantage of portability and ease of use when deployed in the field, such as crime scenes, disaster zones, or in war zones, but many sensor arrays require complex fabrication methods. Here, we report a practical method for the fabrication of 4 × 4 colorimetric sensor arrays, which are printed on nylon membranes, using a commercially available inkjet printer. In order to test the efficacy of the printed arrays, they were exposed to 43 analytes at concentrations ranging from 0.001 to 3.0 M for a total of 559 samples of inorganic and organic acids or bases including hydrochloric, acetic, phthalic, malonic, picric, and trifluoroacetic acid, ammonium hydroxide, sodium hydroxide, lysine, and water as the control. Colorimetric data from the imaged arrays was analyzed with linear discriminant analysis and k-nearest neighbors to determine the analyte and concentration with ∼88-90% accuracy. Overall, the arrays have impressive analytical power to identify a variety of analytes at different concentrations while being simple to fabricate.


Assuntos
Ácidos Carboxílicos/análise , Colorimetria/métodos , Ácido Clorídrico/análise , Hidróxidos/análise , Lisina/análise , Colorimetria/instrumentação , Análise Discriminante , Impressão
10.
Sci Bull (Beijing) ; 69(1): 40-48, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37985311

RESUMO

As an interdisciplinary product, water-soluble gold nanoclusters (AuNCs) stabilized by ligands containing carboxyl (-COOH) group have garnered significant attention from synthetic chemists and biologists due to their immense potential for biomedical applications. However, revealing the crystallographic structures of -COOH-functionalized AuNCs remains a bottleneck. Herein, we successfully applied the salting-out method to obtain a series of high-quality single crystals of -COOH-functionalized Au25 nanoclusters and revealed their crystallographic structures. Particularly, K3Au25(2-Hmna)9(mna)6]- (Au25a) protected by 2-mercaptonicotinic acid features an unprecedented tetrameric Au4(SRS)3(SRS,N)2 staple motifs surrounding the icosahedral Au13 kernel, breaking the traditional perception on the structure of Au25(SR)18. Au25a exhibits a distinct near-infrared emission at 970 nm with long lifetime of 8690 ns, which have been studied by transient absorption spectroscopy and time-dependent density functional theory. This work compensates for the research gap in the experimental structure of -COOH-functionalized AuNCs and opens up a new avenue to explore their structure-property correlations.

11.
Nanoscale ; 15(15): 6934-6940, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37009838

RESUMO

Atomically precise gold clusters have attracted considerable research interest as their tunable structure-property relationships have resulted in widespread applications, from sensing and biomedicine to energetic materials and catalysis. In this article, the synthesis and optical properties of a novel [Au6(SbP3)2][PF6]2 cluster are reported. Despite the lack of spherical symmetry in the core, the cluster shows exceptional thermal and chemical stability. Detailed structural attributes and optical properties are evaluated experimentally and theoretically. This, to the best of our knowledge, is the first report of a gold cluster protected via synergistic multidentate coordination of stibine (Sb) and phosphine moieties (P). To further show that the latter moieties give a set of unique properties that differs from monodentate phosphine-protected [Au6(PPh3)6]2+, geometric structure, electronic structure, and optical properties are analyzed theoretically. In addition, this report also demonstrates the critical role of overall-ligand architecture in stabilizing mixed ligand-protected gold clusters.

12.
Int J Chem ; 10(2): 36-55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31745401

RESUMO

Colorimetric sensor arrays incorporating red, green, and blue (RGB) image analysis use value changes from multiple sensors for the identification and quantification of various analytes. RGB data can be easily obtained using image analysis software such as ImageJ. Subsequent chemometric analysis is becoming a key component of colorimetric array RGB data analysis, though literature contains mainly principal component analysis (PCA) and hierarchical cluster analysis (HCA). Seeking to expand the chemometric methods toolkit for array analysis, we explored the performance of nine chemometric methods were compared for the task of classifying 631 solutions (0.1 to 3 M) of acetic acid, malonic acid, lysine, and ammonia using an eight sensor colorimetric array. PCA and LDA (linear discriminant analysis) were effective for visualizing the dataset. For classification, linear discriminant analysis (LDA), (k nearest neighbors) KNN, (soft independent modelling by class analogy) SIMCA, recursive partitioning and regression trees (RPART), and hit quality index (HQI) were very effective with each method classifying compounds with over 90% correct assignments. Support vector machines (SVM) and partial least squares - discriminant analysis (PLS-DA) struggled with ~85 and 39% correct assignments, respectively. Additional mathematical treatments of the data set, such as incrementally increasing the exponents, did not improve the performance of LDA and KNN. The literature precedence indicates that the most common methods for analyzing colorimetric arrays are PCA, LDA, HCA, and KNN. To our knowledge, this is the first report of comparing and contrasting several more diverse chemometric methods to analyze the same colorimetric array data.

13.
ACS Appl Mater Interfaces ; 9(13): 12109-12117, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28296390

RESUMO

Protein-repellent reactive surfaces that promote localized specific binding are highly desirable for applications in the biomedical field. Nonspecific adhesion will compromise the function of bioactive surfaces, leading to ambiguous results of binding assays and negating the binding specificity of patterned cell-adhesive motives. Localized specific binding is often achieved by attaching a linker to the surface, and the other side of the linker is used to bind specifically to a desired functional agent, as e.g. proteins, antibodies, and fluorophores, depending on the function required by the application. We present a protein-repellent polymer brush enabling highly specific covalent surface immobilization of biorecognition elements by strain-promoted alkyne-azide cycloaddition click chemistry for selective protein adhesion. The protein-repellent polymer brush is functionalized by highly localized molecular binding sites in the low micrometer range using polymer pen lithography (PPL). Because of the massive parallelization of writing pens, the tunable PPL printed patterns can span over square centimeter areas. The selective binding of the protein streptavidin to these surface sites is demonstrated while the remaining polymer brush surface is resisting nonspecific adsorption without any prior blocking by bovine serum albumin (BSA). In contrast to the widely used BSA blocking, the reactive polymer brushes are able to significantly reduce nonspecific protein adsorption, which is the cause of biofouling. This was achieved for solutions of single proteins as well as complex biological fluids. The remarkable fouling resistance of the polymer brushes has the potential to improve the multiplexing capabilities of protein probes and therefore impact biomedical research and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA