RESUMO
The stress-gradient hypothesis predicts a switch from competition to facilitation, under increasing environmental stress. However, it is unclear how important is the change in competition-facilitation balance (i.e., the net outcome of plant-plant interactions) along the stress gradient in the regulation of community temporal stability (i.e., the inverse of temporal variability in total biomass). Increasing environmental stress may enhance community temporal stability by reduced competition or eventually by leading to facilitative interactions between the dominant and subordinate species. Here, we present the results of a 5-yr mesocosm experiment that demonstrates the effects of interspecific interactions on the temporal stability of a riparian community across different drought-stress scenarios. We constructed artificial communities of dominant species (Carex elata) and three subordinate species to simulate the independent effects of environmental stress and interspecific interactions. Using removal of the dominant species, we evaluated the interplay of various mechanisms regulating the temporal stability of the subordinate species (competition-facilitation balance, species asynchrony, and dominant species stability). By simultaneous testing of these stabilizing mechanisms, we show their importance differs depending on environmental variability and harshness. The predominant role is taken by species asynchrony in a seasonally dry environment, whereas in a permanently dry environment, the importance of reduced competition increases. Reduced competition was stabilizing, in particular through increased total community biomass, whereas species asynchrony increased total community biomass and decreased biomass variation. These results suggest experiments and simulations that exclude interspecific interactions may not offer realistic predictions of the effects of changing hydrological regimes on ecosystem functioning.
Assuntos
Ecossistema , Estresse Fisiológico , BiomassaRESUMO
We reconstructed the historical pattern of postglacial biogeographic range expansion of the boreal tree species Alnus incana in Europe. To assess population genetic structure and diversity, we performed a combined analysis of nuclear microsatellite loci and chloroplast DNA sequences (65 populations, 1004 individuals). Analysis of haplotype and microsatellite diversity revealed that southeastern refugial populations situated in the Carpathians and the Balkan Peninsula did not spread north and cannot be considered as important source populations for postglacial recolonization of Europe; populations in Eastern Europe did not establish Fennoscandian populations; populations in Fennoscandia and Eastern Europe have no unique genetic cluster, but represent a mix with a predominant cluster typical for Central Europe; and that colonization of Fennoscandia and Eastern Europe took place from Central Europe. Our findings highlight the importance of an effective refugium in Central Europe located outside classical southern refugia confirming the existence of northern refugia for boreal trees in Europe. The postglacial range expansion of A. incana did not follow the model established for Picea abies. Fennoscandian populations are not derived from Eastern European ones, but from Central European ones.
Assuntos
Alnus/genética , Genética Populacional , Teorema de Bayes , DNA de Cloroplastos/genética , Variação Genética , Haplótipos , Repetições de Microssatélites/genética , Filogeografia , ÁrvoresRESUMO
BACKGROUND AND AIMS: Polyploidy in plants has been studied extensively. In many groups, two or more cytotypes represent separate biological entities with distinct distributions, histories and ecology. This study examines the distribution and origins of cytotypes of Alnus glutinosa in Europe, North Africa and western Asia. METHODS: A combined approach was used involving flow cytometry and microsatellite analysis of 12 loci in 2200 plants from 209 populations combined with species distribution modelling using MIROC and CCSM climatic models, in order to analyse (1) ploidy and genetic variation, (2) the origin of tetraploid A. glutinosa, considering A. incana as a putative parent, and (3) past distributions of the species. KEY RESULTS: The occurrence of tetraploid populations of A. glutinosa in Europe is determined for the first time. The distribution of tetraploids is far from random, forming two geographically well-delimited clusters located in the Iberian Peninsula and the Dinaric Alps. Based on microsatellite analysis, both tetraploid clusters are probably of autopolyploid origin, with no indication that A. incana was involved in their evolutionary history. A projection of the MIROC distribution model into the Last Glacial Maximum (LGM) showed that (1) populations occurring in the Iberian Peninsula and North Africa were probably interconnected during the LGM and (2) populations occurring in the Dinaric Alps did not exist throughout the last glacial periods, having retreated southwards into lowland areas of the Balkan Peninsula. CONCLUSIONS: Newly discovered tetraploid populations are situated in the putative main glacial refugia, and neither of them was likely to have been involved in the colonization of central and northern Europe after glacial withdrawal. This could mean that neither the Iberian Peninsula nor the western part of the Balkan Peninsula served as effective refugial areas for northward post-glacial expansion of A. glutinosa.
Assuntos
Alnus/citologia , Alnus/genética , Ecossistema , Citometria de Fluxo/métodos , Geografia , Repetições de Microssatélites/genética , Filogenia , Alelos , Diploide , Europa (Continente) , Genes de Plantas , Variação Genética , Poliploidia , Análise de Componente PrincipalRESUMO
Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent-wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear-edge populations in the Mediterranean region more vulnerable to extinction due to climate change.
Assuntos
Alnus/genética , Mudança Climática , Variação Genética , Genética Populacional , Refúgio de Vida Selvagem , Teorema de Bayes , DNA de Cloroplastos/genética , DNA de Plantas/genética , Europa (Continente) , Evolução Molecular , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Floodplain forests offer a diversity of habitats and resources for a very wide range of plant and animal species. They also offer many benefits to humankind and are considered essential to the mitigation of the effects of climate change. Nevertheless, throughout the world they are suffering the most intense of anthropogenic pressures so are, of all ecosystems, among the most endangered. Here, we bring together and synthesise existing ecological understanding of the mechanisms underlying the high heterogeneity and diversity of temperate floodplain forests and of the pressures threatening their high biological value due to habitat homogenisation. Floodplain forests depend on the periodic disturbances under which they evolved, including fluvial dynamics, traditional management practices and the activities of herbivores. However, they have been heavily degraded by climate change, invasion of exotic species, river-flow regulation, landscape fragmentation, eutrophication and the cessation of traditional management. We can now observe two general trends in temperate floodplain forests: (1) Due to intensive landscape exploitation, they are now more open and thus prone to the spread of competitive species, including of invasive exotics and (2) Due to the cessation of traditional management, along with modified hydrological conditions, they are composed of species in the later successional stages (i.e., more shade-tolerant and mesic) while light-demanding species are quickly vanishing. Restoration practices have brought about contrasting results when restoration of floodplains to their natural states has been problematic. This is likely because of interplay between various natural and artificial processes not previously taken into proper consideration. We would like to draw attention to the fact that restoration projects or the preservation of existing floodplain forest ecosystems should combine the restoration of watercourses with the mitigation of other important threats acting at different scales of the landscape (spread of invasive species, eutrophication of watersheds and inappropriate forest management).