RESUMO
BACKGROUND: Numerous trials have addressed intracranial pressure (ICP) management in neurocritical care. However, identifying its harmful thresholds and controlling ICP remain challenging in terms of improving outcomes. Evidence suggests that an individualized approach is necessary for establishing tolerance limits for ICP, incorporating factors such as ICP waveform (ICPW) or pulse morphology along with additional data provided by other invasive (e.g., brain oximetry) and noninvasive monitoring (NIM) methods (e.g., transcranial Doppler, optic nerve sheath diameter ultrasound, and pupillometry). This study aims to assess current ICP monitoring practices among experienced clinicians and explore whether guidelines should incorporate ancillary parameters from NIM and ICPW in future updates. METHODS: We conducted a survey among experienced professionals involved in researching and managing patients with severe injury across low-middle-income countries (LMICs) and high-income countries (HICs). We sought their insights on ICP monitoring, particularly focusing on the impact of NIM and ICPW in various clinical scenarios. RESULTS: From October to December 2023, 109 professionals from the Americas and Europe participated in the survey, evenly distributed between LMIC and HIC. When ICP ranged from 22 to 25 mm Hg, 62.3% of respondents were open to considering additional information, such as ICPW and other monitoring techniques, before adjusting therapy intensity levels. Moreover, 77% of respondents were inclined to reassess patients with ICP in the 18-22 mm Hg range, potentially escalating therapy intensity levels with the support of ICPW and NIM. Differences emerged between LMIC and HIC participants, with more LMIC respondents preferring arterial blood pressure transducer leveling at the heart and endorsing the use of NIM techniques and ICPW as ancillary information. CONCLUSIONS: Experienced clinicians tend to personalize ICP management, emphasizing the importance of considering various monitoring techniques. ICPW and noninvasive techniques, particularly in LMIC settings, warrant further exploration and could potentially enhance individualized patient care. The study suggests updating guidelines to include these additional components for a more personalized approach to ICP management.
RESUMO
BACKGROUND/OBJECTIVE: Levetiracetam is used for seizure prophylaxis in patients presenting with subarachnoid hemorrhage (SAH) or traumatic brain injury (TBI). We aim to characterize the optimal levetiracetam dosage for seizure prophylaxis. METHODS: This retrospective cohort study included adult patients at an academic tertiary hospital presenting with SAH or TBI who received levetiracetam at a total daily dose (TDD) equivalent to or greater than 1000 mg. The primary outcome was combined seizure incidence, including clinical and subclinical seizures. RESULTS: We identified 139 patients (49.6% male, mean age 53 years) for inclusion. For patients receiving a 1000-mg TDD, the administration was 500 mg twice daily. For patients receiving >1000-mg TDD, 77/78 patients received 1000 mg twice daily and one patient received 750 mg twice daily. Patients receiving 1000-mg TDD had a higher seizure incidence than those receiving >1000-mg TDD (p = 0.01), despite no difference in examined confounders, including history of alcoholism (p = 0.49), benzodiazepine use (p = 0.28), or propofol use (p = 0.17). No difference in adverse effects was observed (anemia, p = 0.44; leukopenia, p = 0.60; thrombocytopenia, p = 0.86). CONCLUSIONS: Patients may experience a reduced incidence of clinical and electroencephalographic seizures with levetiracetam dosing >1000-mg TDD.
Assuntos
Lesões Encefálicas Traumáticas , Piracetam , Hemorragia Subaracnóidea , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Levetiracetam/uso terapêutico , Anticonvulsivantes/uso terapêutico , Piracetam/uso terapêutico , Fenitoína/uso terapêutico , Estudos Retrospectivos , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Convulsões/etiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológicoRESUMO
PURPOSE OF REVIEW: The aim of this study was to provide an overview on advances in intracranial pressure (ICP) protocols for care, moving from traditional to more recent concepts. RECENT FINDINGS: Deep understanding of mechanics and dynamics of fluids and solids have been introduced for intracranial physiology. The amplitude or the harmonics of the cerebral-spinal fluid and the cerebral blood waves shows more information about ICP than just a numeric threshold. When the ICP overcome the compensatory mechanisms that maintain the compliance within the skull, an intracranial compartment syndrome (ICCS) is defined. Autoregulation monitoring emerge as critical tool to recognize CPP management. Measurement of brain tissue oxygen will be a critical intervention for diagnosing an ICCS. Surgical procedures focused on increasing the physiological compliance and increasing the volume of the compartments of the skull. SUMMARY: ICP management is a complex task, moving far than numeric thresholds for activation of interventions. The interactions of intracranial elements requires new interpretations moving beyond classical theories. Most of the traditional clinical studies supporting ICP management are not generating high class evidence. Recommendations for ICP management requires better designed clinical studies using new concepts to generate interventions according to the new era of personalized medicine.
Assuntos
Lesões Encefálicas , Pressão Intracraniana , Pressão Sanguínea/fisiologia , Encéfalo , Circulação Cerebrovascular/fisiologia , Homeostase/fisiologia , Humanos , Pressão Intracraniana/fisiologiaRESUMO
Impaired cerebrovascular reactivity in adult moderate and severe traumatic brain injury (TBI) is known to be associated with worse global outcome at 6-12 months. As technology has improved over the past decades, monitoring of cerebrovascular reactivity has shifted from intermittent measures, to experimentally validated continuously updating indices at the bedside. Such advances have led to the exploration of individualised physiologic targets in adult TBI management, such as optimal cerebral perfusion pressure (CPP) values, or CPP limits in which vascular reactivity is relatively intact. These targets have been shown to have a stronger association with outcome compared with existing consensus-based guideline thresholds in severe TBI care. This has sparked ongoing prospective trials of such personalised medicine approaches in adult TBI. In this narrative review paper, we focus on the concept of cerebral autoregulation, proposed mechanisms of control and methods of continuous monitoring used in TBI. We highlight multimodal cranial monitoring approaches for continuous cerebrovascular reactivity assessment, physiologic and neuroimaging correlates, and associations with outcome. Finally, we explore the recent 'state-of-the-art' advances in personalised physiologic targets based on continuous cerebrovascular reactivity monitoring, their benefits, and implications for future avenues of research in TBI.
RESUMO
Background: Optic nerve ultrasonography (optic nerve sheath diameter sonography) has been proposed as a noninvasive, quick method for diagnosing increased intracranial pressure. Purpose: To examine the accuracy of optic nerve ultrasonography for diagnosing increased intracranial pressure in children and adults. Data Sources: 13 databases from inception through May 2019, reference lists, and meeting proceedings. Study Selection: Prospective optic nerve ultrasonography diagnostic accuracy studies, published in any language, involving any age group or reference standard. Data Extraction: 3 reviewers independently abstracted data and performed quality assessment. Data Synthesis: Of 71 eligible studies involving 4551 patients, 61 included adults, and 35 were rated as having low risk of bias. The pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of optic nerve ultrasonography in patients with traumatic brain injury were 97% (95% CI, 92% to 99%), 86% (CI, 74% to 93%), 6.93 (CI, 3.55 to 13.54), and 0.04 (CI, 0.02 to 0.10), respectively. Respective estimates in patients with nontraumatic brain injury were 92% (CI, 86% to 96%), 86% (CI, 77% to 92%), 6.39 (CI, 3.77 to 10.84), and 0.09 (CI, 0.05 to 0.17). Accuracy estimates were similar among studies stratified by patient age, operator specialty and training level, reference standard, sonographer blinding status, and cutoff value. The optimal cutoff for optic nerve sheath dilatation on ultrasonography was 5.0 mm. Limitation: Small studies, imprecise summary estimates, possible publication bias, and no evaluation of effect on clinical outcomes. Conclusion: Optic nerve ultrasonography can help diagnose increased intracranial pressure. A normal sheath diameter measurement has high sensitivity and a low negative likelihood ratio that may rule out increased intracranial pressure, whereas an elevated measurement, characterized by a high specificity and positive likelihood ratio, may indicate increased intracranial pressure and the need for additional confirmatory tests. Primary Funding Source: None. (PROSPERO: CRD42017055485).
Assuntos
Hipertensão Intracraniana/diagnóstico por imagem , Nervo Óptico/diagnóstico por imagem , Testes Imediatos , Ultrassonografia , Adulto , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico por imagem , Criança , Interpretação Estatística de Dados , Humanos , Hipertensão Intracraniana/diagnóstico , Hipertensão Intracraniana/etiologia , Pressão Intracraniana , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Ultrassonografia/métodosRESUMO
OBJECTIVE: Traumatic brain injuries (TBIs) are a significant disease burden worldwide. It is imperative to improve neurosurgeons' training during and after their medical residency with appropriate neurotrauma competencies. Unfortunately, the development of these competencies during neurosurgeons' careers and in daily practice is very heterogeneous. This article aimed to describe the development and evaluation of a competency-based international course curriculum designed to address a broad spectrum of needs for taking care of patients with neurotrauma with basic and advanced interventions in different scenarios around the world. METHODS: A committee of 5 academic neurosurgeons was involved in the task of building this course curriculum. The process started with the identification of the problems to be addressed and the subsequent performance needed. After this, competencies were defined. In the final phase, educational activities were designed to achieve the intended learning outcomes. In the end, the entire process resulted in competency and outcomes-based education strategy, including a definition of all learning activities and learning outcomes (curriculum), that can be integrated with a faculty development process, including training. Further development was completed by 4 additional academic neurosurgeons supported by a curriculum developer specialist and a project manager. After the development of the course curriculum, template programs were developed with core and optional content defined for implementation and evaluation. RESULTS: The content of the course curriculum is divided into essentials and advanced concepts and interventions in neurotrauma care. A mixed sample of 1583 neurosurgeons and neurosurgery residents attending 36 continuing medical education activities in 30 different cities around the world evaluated the course. The average satisfaction was 97%. The average usefulness score was 4.2, according to the Likert scale. CONCLUSIONS: An international competency-based course curriculum is an option for creating a well-accepted neurotrauma educational process designed to address a broad spectrum of needs that a neurotrauma practitioner faces during the basic and advanced care of patients in different regions of the world. This process may also be applied to other areas of the neurosurgical knowledge spectrum. Moreover, this process allows worldwide standardization of knowledge requirements and competencies, such that training may be better benchmarked between countries regardless of their income level.
Assuntos
Internato e Residência/estatística & dados numéricos , Neurocirurgiões/educação , Neurocirurgia/educação , Procedimentos Neurocirúrgicos/educação , Currículo/estatística & dados numéricos , Educação Médica Continuada/estatística & dados numéricos , HumanosRESUMO
BACKGROUND: Acute treatment of cerebral edema and elevated intracranial pressure is a common issue in patients with neurological injury. Practical recommendations regarding selection and monitoring of therapies for initial management of cerebral edema for optimal efficacy and safety are generally lacking. This guideline evaluates the role of hyperosmolar agents (mannitol, HTS), corticosteroids, and selected non-pharmacologic therapies in the acute treatment of cerebral edema. Clinicians must be able to select appropriate therapies for initial cerebral edema management based on available evidence while balancing efficacy and safety. METHODS: The Neurocritical Care Society recruited experts in neurocritical care, nursing, and pharmacy to create a panel in 2017. The group generated 16 clinical questions related to initial management of cerebral edema in various neurological insults using the PICO format. A research librarian executed a comprehensive literature search through July 2018. The panel screened the identified articles for inclusion related to each specific PICO question and abstracted necessary information for pertinent publications. The panel used GRADE methodology to categorize the quality of evidence as high, moderate, low, or very low based on their confidence that the findings of each publication approximate the true effect of the therapy. RESULTS: The panel generated recommendations regarding initial management of cerebral edema in neurocritical care patients with subarachnoid hemorrhage, traumatic brain injury, acute ischemic stroke, intracerebral hemorrhage, bacterial meningitis, and hepatic encephalopathy. CONCLUSION: The available evidence suggests hyperosmolar therapy may be helpful in reducing ICP elevations or cerebral edema in patients with SAH, TBI, AIS, ICH, and HE, although neurological outcomes do not appear to be affected. Corticosteroids appear to be helpful in reducing cerebral edema in patients with bacterial meningitis, but not ICH. Differences in therapeutic response and safety may exist between HTS and mannitol. The use of these agents in these critical clinical situations merits close monitoring for adverse effects. There is a dire need for high-quality research to better inform clinicians of the best options for individualized care of patients with cerebral edema.
Assuntos
Edema Encefálico/terapia , Diuréticos Osmóticos/uso terapêutico , Glucocorticoides/uso terapêutico , Hipertensão Intracraniana/terapia , Manitol/uso terapêutico , Solução Salina Hipertônica/uso terapêutico , Edema Encefálico/etiologia , Lesões Encefálicas Traumáticas/complicações , Hemorragia Cerebral/complicações , Derivações do Líquido Cefalorraquidiano/métodos , Cuidados Críticos , Serviços Médicos de Emergência , Encefalopatia Hepática/complicações , Humanos , Hipertensão Intracraniana/etiologia , AVC Isquêmico/complicações , Meningites Bacterianas/complicações , Posicionamento do Paciente/métodos , Sociedades Médicas , Hemorragia Subaracnóidea/complicaçõesRESUMO
Current accepted cerebrovascular reactivity indices suffer from the need of high frequency data capture and export for post-acquisition processing. The role for minute-by-minute data in cerebrovascular reactivity monitoring remains uncertain. The goal was to explore the statistical time-series relationships between intra-cranial pressure (ICP), mean arterial pressure (MAP) and pressure reactivity index (PRx) using both 10-s and minute data update frequency in TBI. Prospective data from 31 patients from 3 centers with moderate/severe TBI and high-frequency archived physiology were reviewed. Both 10-s by 10-s and minute-by-minute mean values were derived for ICP and MAP for each patient. Similarly, PRx was derived using 30 consecutive 10-s data points, updated every minute. While long-PRx (L-PRx) was derived via similar methodology using minute-by-minute data, with L-PRx derived using various window lengths (5, 10, 20, 30, 40, and 60 min; denoted L-PRx_5, etc.). Time-series autoregressive integrative moving average (ARIMA) and vector autoregressive integrative moving average (VARIMA) models were created to analyze the relationship of these parameters over time. ARIMA modelling, Granger causality testing and VARIMA impulse response function (IRF) plotting demonstrated that similar information is carried in minute mean ICP and MAP data, compared to 10-s mean slow-wave ICP and MAP data. Shorter window L-PRx variants, such as L-PRx_5, appear to have a similar ARIMA structure, have a linear association with PRx and display moderate-to-strong correlations (r ~ 0.700, p < 0.0001 for each patient). Thus, these particular L-PRx variants appear closest in nature to standard PRx. ICP and MAP derived via 10-s or minute based averaging display similar statistical time-series structure and co-variance patterns. PRx and L-PRx based on shorter windows also behave similarly over time. These results imply certain L-PRx variants may carry similar information to PRx in TBI.
Assuntos
Lesões Encefálicas Traumáticas , Circulação Cerebrovascular , Humanos , Pressão Intracraniana , Projetos Piloto , Estudos ProspectivosRESUMO
BACKGROUND: Atraumatic needles have been proposed to lower complication rates after lumbar puncture. However, several surveys indicate that clinical adoption of these needles remains poor. We did a systematic review and meta-analysis to compare patient outcomes after lumbar puncture with atraumatic needles and conventional needles. METHODS: In this systematic review and meta-analysis, we independently searched 13 databases with no language restrictions from inception to Aug 15, 2017, for randomised controlled trials comparing the use of atraumatic needles and conventional needles for any lumbar puncture indication. Randomised trials comparing atraumatic and conventional needles in which no dural puncture was done (epidural injections) or without a conventional needle control group were excluded. We screened studies and extracted data from published reports independently. The primary outcome of postdural-puncture headache incidence and additional safety and efficacy outcomes were assessed by random-effects and fixed-effects meta-analysis. This study is registered with the International Prospective Register of Systematic Reviews, number CRD42016047546. FINDINGS: We identified 20â241 reports; after exclusions, 110 trials done between 1989 and 2017 from 29 countries, including a total of 31â412 participants, were eligible for analysis. The incidence of postdural-puncture headache was significantly reduced from 11·0% (95% CI 9·1-13·3) in the conventional needle group to 4·2% (3·3-5·2) in the atraumatic group (relative risk 0·40, 95% CI 0·34-0·47, p<0·0001; I2=45·4%). Atraumatic needles were also associated with significant reductions in the need for intravenous fluid or controlled analgesia (0·44, 95% CI 0·29-0·64; p<0·0001), need for epidural blood patch (0·50, 0·33-0·75; p=0·001), any headache (0·50, 0·43-0·57; p<0·0001), mild headache (0·52, 0·38-0·70; p<0·0001), severe headache (0·41, 0·28-0·59; p<0·0001), nerve root irritation (0·71, 0·54-0·92; p=0·011), and hearing disturbance (0·25, 0·11-0·60; p=0·002). Success of lumbar puncture on first attempt, failure rate, mean number of attempts, and the incidence of traumatic tap and backache did not differ significantly between the two needle groups. Prespecified subgroup analyses of postdural-puncture headache revealed no interactions between needle type and patient age, sex, use of prophylactic intravenous fluid, needle gauge, patient position, indication for lumbar puncture, bed rest after puncture, or clinician specialty. These results were rated high-quality evidence as examined using the grading of recommendations assessment, development, and evaluation. INTERPRETATION: Among patients who had lumbar puncture, atraumatic needles were associated with a decrease in the incidence of postdural-puncture headache and in the need for patients to return to hospital for additional therapy, and had similar efficacy to conventional needles. These findings offer clinicians and stakeholders a comprehensive assessment and high-quality evidence for the safety and efficacy of atraumatic needles as a superior option for patients who require lumbar puncture. FUNDING: None.
Assuntos
Agulhas , Punção Espinal/instrumentação , Humanos , Punção Espinal/efeitos adversosRESUMO
PURPOSE OF REVIEW: Spinal cord injury (SCI) shows an incidence of 10.4-83 cases/million/year globally and remains a significant source of morbidity and cost to society. Despite greater understanding of the pathophysiology of SCI, neuroprotective and regenerative approaches to treatment have had limited clinical utility to date. Here, we review the key components of supportive care that are thus the mainstay of therapy and that have improved outcomes for victims of acute SCI in recent decades. RECENT STUDIES: Current management strategies for acute SCI involve early surgical decompression and fixation, the use of vasopressor medications for mean arterial blood pressure (MAP) augmentation to improve spinal cord perfusion, and corticosteroids. We highlight recent literature supporting the role of norepinephrine in acute SCI management and also an emerging neurocritical care strategy that seeks to optimize spinal cord perfusion pressure with the assistance of invasive monitoring. This review will highlight key pathophysiologic principles and targets for current acute clinical treatments in SCI, which include early surgical decompression, MAP augmentation, and corticosteroids. We discuss anticipated future research in these areas and focus on potential risks inherent to these treatments.
Assuntos
Procedimentos Neurocirúrgicos/métodos , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/cirurgia , Descompressão Cirúrgica , Humanos , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , VasoconstritoresRESUMO
BACKGROUND: Two randomised trials assessing the effectiveness of decompressive craniectomy (DC) following traumatic brain injury (TBI) were published in recent years: DECRA in 2011 and RESCUEicp in 2016. As the results have generated debate amongst clinicians and researchers working in the field of TBI worldwide, it was felt necessary to provide general guidance on the use of DC following TBI and identify areas of ongoing uncertainty via a consensus-based approach. METHODS: The International Consensus Meeting on the Role of Decompressive Craniectomy in the Management of Traumatic Brain Injury took place in Cambridge, UK, on the 28th and 29th September 2017. The meeting was jointly organised by the World Federation of Neurosurgical Societies (WFNS), AO/Global Neuro and the NIHR Global Health Research Group on Neurotrauma. Discussions and voting were organised around six pre-specified themes: (1) primary DC for mass lesions, (2) secondary DC for intracranial hypertension, (3) peri-operative care, (4) surgical technique, (5) cranial reconstruction and (6) DC in low- and middle-income countries. RESULTS: The invited participants discussed existing published evidence and proposed consensus statements. Statements required an agreement threshold of more than 70% by blinded voting for approval. CONCLUSIONS: In this manuscript, we present the final consensus-based recommendations. We have also identified areas of uncertainty, where further research is required, including the role of primary DC, the role of hinge craniotomy and the optimal timing and material for skull reconstruction.
Assuntos
Lesões Encefálicas Traumáticas/cirurgia , Craniectomia Descompressiva/métodos , Hipertensão Intracraniana/cirurgia , Lesões Encefálicas Traumáticas/complicações , Consenso , Humanos , Hipertensão Intracraniana/etiologiaRESUMO
AIM: To discuss adherence to guidelines for the management of traumatic brain injury (TBI) in Türkiye and physicians' attitudes toward standardized, evidence-based medical practice. MATERIAL AND METHODS: Survey questions were uploaded on the website www.surveymonkey.com and sent to the participants via e-mail or social media applications. The first 10 questions were about the participants' profiles, and the rest were purposed on presenting the physicians' viewpoint on and barriers against CPG adherence. SPSS version 17.0 for Windows was used for statistical analysis. RESULTS: A total of 404 physicians (neurosurgeons, 59.5%; anesthesiologists, 16.7%; and emergency medicine practitioners, 23.9%) who were involved in TBI management were included in this study. Of them, 61.7% stated that they frequently adhere to the CPG recommendations for TBI. In their own experience, most of the respondents agreed that CPGs frequently improve outcomes. They stated that they would occasionally or never adopt recommendations with weak evidence. Physicians reached a consensus on individualizing the decision-making along with the CPG recommendations. CONCLUSION: Of the participants, 61% adopted the CPG recommendations. The main barriers to the implementation of the CPGs are the strength of evidence levels and the affordability of the recommendations.
Assuntos
Lesões Encefálicas Traumáticas , Humanos , Turquia , Inquéritos e Questionários , Lesões Encefálicas Traumáticas/terapiaRESUMO
Traumatic brain injury is often associated with a direct or secondary neurovascular pathology. In this review, we present recent advancements in endovascular neurosurgery that enable accurate and effective vessel reconstruction with emphasis on its role in early diagnosis, the expanding use of flow diversion in pseudoaneurysms, and traumatic arteriovenous fistulas. In addition, future directions in which catheter-based interventions could potentially affect traumatic brain injury are described: targeting blood brain barrier integrity using the advantages of intra-arterial drug delivery of blood brain barrier stabilizers to prevent secondary brain edema, exploring the impact of endovascular venous access as a means to modulate venous outflow in an attempt to reduce intracranial pressure and augment brain perfusion, applying selective intra-arterial hypothermia as a neuroprotection method mitigating some of the risks conferred by systemic cooling, trans-vessel wall delivery of regenerative therapy agents, and shifting attention using multimodal neuromonitoring to post-traumatic vasospasm to further characterize the role it plays in secondary brain injury. Thus, we believe that the potential of endovascular tools can be expanded because they enable access to the "highways" governing perfusion and flow and call for further research focused on exploring these routes because it may contribute to novel endovascular approaches currently used for treating injured vessels, harnessing them for treatment of the injured brain.
Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Neoplasias Encefálicas , Humanos , Encéfalo/patologia , Edema Encefálico/patologia , Neoplasias Encefálicas/patologiaRESUMO
Intracranial pressure monitoring enables the detection and treatment of intracranial hypertension, a potentially lethal insult after traumatic brain injury. Despite its widespread use, robust evidence supporting intracranial pressure monitoring and treatment remains sparse. International studies have shown large variations between centres regarding the indications for intracranial pressure monitoring and treatment of intracranial hypertension. Experts have reviewed these two aspects and, by consensus, provided practical approaches for monitoring and treatment. Advances have occurred in methods for non-invasive estimation of intracranial pressure although, for now, a reliable way to non-invasively and continuously measure intracranial pressure remains aspirational. Analysis of the intracranial pressure signal can provide information on brain compliance (ie, the ability of the cranium to tolerate volume changes) and on cerebral autoregulation (ie, the ability of cerebral blood vessels to react to changes in blood pressure). The information derived from the intracranial pressure signal might allow for more individualised patient management. Machine learning and artificial intelligence approaches are being increasingly applied to intracranial pressure monitoring, but many obstacles need to be overcome before their use in clinical practice could be attempted. Robust clinical trials are needed to support indications for intracranial pressure monitoring and treatment. Progress in non-invasive assessment of intracranial pressure and in signal analysis (for targeted treatment) will also be crucial.
Assuntos
Lesões Encefálicas Traumáticas , Hipertensão Intracraniana , Pressão Intracraniana , Humanos , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Pressão Intracraniana/fisiologia , Hipertensão Intracraniana/diagnóstico , Hipertensão Intracraniana/fisiopatologia , Hipertensão Intracraniana/etiologia , Monitorização Fisiológica/métodos , Adulto , Monitorização Neurofisiológica/métodosRESUMO
Traumatic Brain Injury (TBI) remains a leading cause of morbidity and mortality among all ages; despite the advances, understanding pathophysiological responses after TBI is still complex, involving multiple mechanisms. Previous reviews have focused on potential targets; however, the research on potential targets has continuously grown in the last five years, bringing even more alternatives and elucidating previous mechanisms. Knowing the key and updated pathophysiology concepts is vital for adequate management and better outcomes. This article reviews the underlying molecular mechanisms, the latest updates, and future directions for pathophysiology-based TBI management.
RESUMO
Moderate traumatic brain injury (TBI) is a diagnosis that describes diverse patients with heterogeneity of primary injuries. Defined by a Glasgow Coma Scale between 9 and 12, this category includes patients who may neurologically worsen and require increasing intensive care resources and/or emergency neurosurgery. Despite the unique characteristics of these patients, there have not been specific guidelines published before this effort to support decision-making in these patients. A Delphi consensus group from the Latin American Brain Injury Consortium was established to generate recommendations related to the definition and categorization of moderate TBI. Before an in-person meeting, a systematic review of the literature was performed identifying evidence relevant to planned topics. Blinded voting assessed support for each recommendation. A priori the threshold for consensus was set at 80% agreement. Nine PICOT questions were generated by the panel, including definition, categorization, grouping, and diagnosis of moderate TBI. Here, we report the results of our work including relevant consensus statements and discussion for each question. Moderate TBI is an entity for which there is little published evidence available supporting definition, diagnosis, and management. Recommendations based on experts' opinion were informed by available evidence and aim to refine the definition and categorization of moderate TBI. Further studies evaluating the impact of these recommendations will be required.
Assuntos
Lesões Encefálicas Traumáticas , Consenso , Humanos , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/classificação , Adulto , América Latina/epidemiologia , Técnica Delphi , Escala de Coma de Glasgow/normasRESUMO
STUDY DESIGN: Clinical practice guideline development. OBJECTIVES: Acute spinal cord injury (SCI) can result in devastating motor, sensory, and autonomic impairment; loss of independence; and reduced quality of life. Preclinical evidence suggests that early decompression of the spinal cord may help to limit secondary injury, reduce damage to the neural tissue, and improve functional outcomes. Emerging evidence indicates that "early" surgical decompression completed within 24 hours of injury also improves neurological recovery in patients with acute SCI. The objective of this clinical practice guideline (CPG) is to update the 2017 recommendations on the timing of surgical decompression and to evaluate the evidence with respect to ultra-early surgery (in particular, but not limited to, <12 hours after acute SCI). METHODS: A multidisciplinary, international, guideline development group (GDG) was formed that consisted of spine surgeons, neurologists, critical care specialists, emergency medicine doctors, physical medicine and rehabilitation professionals, as well as individuals living with SCI. A systematic review was conducted based on accepted methodological standards to evaluate the impact of early (within 24 hours of acute SCI) or ultra-early (in particular, but not limited to, within 12 hours of acute SCI) surgery on neurological recovery, functional outcomes, administrative outcomes, safety, and cost-effectiveness. The GRADE approach was used to rate the overall strength of evidence across studies for each primary outcome. Using the "evidence-to-recommendation" framework, recommendations were then developed that considered the balance of benefits and harms, financial impact, patient values, acceptability, and feasibility. The guideline was internally appraised using the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool. RESULTS: The GDG recommended that early surgery (≤24 hours after injury) be offered as the preferred option for adult patients with acute SCI regardless of level. This recommendation was based on moderate evidence suggesting that patients were 2 times more likely to recover by ≥ 2 ASIA Impairment Score (AIS) grades at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, patients undergoing early surgery improved by an additional 4.50 (95% 1.70 to 7.29) points on the ASIA Motor Score compared to patients undergoing surgery after 24 hours post-injury. The GDG also agreed that a recommendation for ultra-early surgery could not be made on the basis of the current evidence because of the small sample sizes, variable definitions of what constituted ultra-early in the literature, and the inconsistency of the evidence. CONCLUSIONS: It is recommended that patients with an acute SCI, regardless of level, undergo surgery within 24 hours after injury when medically feasible. Future research is required to determine the differential effectiveness of early surgery in different subpopulations and the impact of ultra-early surgery on neurological recovery. Moreover, further work is required to define what constitutes effective spinal cord decompression and to individualize care. It is also recognized that a concerted international effort will be required to translate these recommendations into policy.
RESUMO
STUDY DESIGN: Development of a clinical practice guideline following the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) process. OBJECTIVE: The objectives of this study were to develop guidelines that outline the utility of intraoperative neuromonitoring (IONM) to detect intraoperative spinal cord injury (ISCI) among patients undergoing spine surgery, to define a subset of patients undergoing spine surgery at higher risk for ISCI and to develop protocols to prevent, diagnose, and manage ISCI. METHODS: All systematic reviews were performed according to PRISMA standards and registered on PROSPERO. A multidisciplinary, international Guidelines Development Group (GDG) reviewed and discussed the evidence using GRADE protocols. Consensus was defined by 80% agreement among GDG members. A systematic review and diagnostic test accuracy (DTA) meta-analysis was performed to synthesize pooled evidence on the diagnostic accuracy of IONM to detect ISCI among patients undergoing spinal surgery. The IONM modalities evaluated included somatosensory evoked potentials (SSEPs), motor evoked potentials (MEPs), electromyography (EMG), and multimodal neuromonitoring. Utilizing this knowledge and their clinical experience, the multidisciplinary GDG created recommendations for the use of IONM to identify ISCI in patients undergoing spine surgery. The evidence related to existing care pathways to manage ISCI was summarized and based on this a novel AO Spine-PRAXIS care pathway was created. RESULTS: Our recommendations are as follows: (1) We recommend that intraoperative neurophysiological monitoring be employed for high risk patients undergoing spine surgery, and (2) We suggest that patients at "high risk" for ISCI during spine surgery be proactively identified, that after identification of such patients, multi-disciplinary team discussions be undertaken to manage patients, and that an intraoperative protocol including the use of IONM be implemented. A care pathway for the prevention, diagnosis, and management of ISCI has been developed by the GDG. CONCLUSION: We anticipate that these guidelines will promote the use of IONM to detect and manage ISCI, and promote the use of preoperative and intraoperative checklists by surgeons and other team members for high risk patients undergoing spine surgery. We welcome teams to implement and evaluate the care pathway created by our GDG.