RESUMO
White matter (WM) fiber tract differences are present in autism spectrum disorder (ASD) and could be important markers of behavior. One of the earliest phenotypic differences in ASD are language atypicalities. Although language has been linked to WM in typical development, no work has evaluated this association in early ASD. Participants came from the Infant Brain Imaging Study and included 321 infant siblings of children with ASD at high likelihood (HL) for developing ASD; 70 HL infants were later diagnosed with ASD (HL-ASD), and 251 HL infants were not diagnosed with ASD (HL-Neg). A control sample of 140 low likelihood infants not diagnosed with ASD (LL-Neg) were also included. Infants contributed expressive language, receptive language, and diffusion tensor imaging data at 6-, 12-, and 24 months. Mixed effects regression models were conducted to evaluate associations between WM and language trajectories. Trajectories of microstructural changes in the right arcuate fasciculus were associated with expressive language development. HL-ASD infants demonstrated a different developmental pattern compared to the HL-Neg and LL-Neg groups, wherein the HL-ASD group exhibited a positive association between WM fractional anisotropy and language whereas HL-Neg and LL-Neg groups showed weak or no association. No other fiber tracts demonstrated significant associations with language. In conclusion, results indicated arcuate fasciculus WM is linked to language in early toddlerhood for autistic toddlers, with the strongest associations emerging around 24 months. To our knowledge, this is the first study to evaluate associations between language and WM development during the pre-symptomatic period in ASD.
Assuntos
Transtorno do Espectro Autista , Encéfalo , Imagem de Tensor de Difusão , Desenvolvimento da Linguagem , Substância Branca , Humanos , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/patologia , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Masculino , Feminino , Lactente , Imagem de Tensor de Difusão/métodos , Pré-Escolar , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Irmãos , IdiomaRESUMO
The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.
Assuntos
Tonsila do Cerebelo , Imageamento por Ressonância Magnética , Córtex Visual , Humanos , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Masculino , Feminino , Lactente , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiopatologia , Córtex Visual/crescimento & desenvolvimento , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Predisposição Genética para Doença/genéticaRESUMO
Using the Infant Behavior Questionnaire-Revised in a longitudinal sample of infant siblings of autistic children (HR; n = 427, 171 female, 83.4% White) and a comparison group of low-risk controls (LR, n = 200, 86 female, 81.5% White), collected between 2007 and 2017, this study identified an invariant factor structure of temperament traits across groups at 6 and 12 months. Second, after partitioning the groups by familial risk and diagnostic outcome at 24 months, results reveal an endophenotypic pattern of Positive Emotionality at both 6 and 12 months, (HR-autism spectrum disorder [ASD] < HR-no-ASD < LR). Third, increased 'Duration of Orienting' at 12 months was associated with lower scores on the 24-month developmental outcomes in HR infants. These findings may augment efforts for early identification of ASD.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/diagnóstico , Transtorno Autístico/diagnóstico , Criança , Feminino , Humanos , Lactente , Comportamento do Lactente , Irmãos , Inquéritos e QuestionáriosRESUMO
BACKGROUND: Diagnostic shifts at early ages may provide invaluable insights into the nature of separation between autism spectrum disorder (ASD) and typical development. Recent conceptualizations of ASD suggest the condition is only fuzzily separated from non-ASD, with intermediate cases between the two. These intermediate cases may shift along a transition region over time, leading to apparent instability of diagnosis. METHODS: We used a cohort of children with high ASD risk, by virtue of having an older sibling with ASD, assessed at 24 months (N = 212) and 36 months (N = 191). We applied machine learning to empirically characterize the classification boundary between ASD and non-ASD, using variables quantifying developmental and adaptive skills. We computed the distance of children to the classification boundary. RESULTS: Children who switched diagnostic labels from 24 to 36 months, in both directions, (dynamic group) had intermediate phenotypic profiles. They were closer to the classification boundary compared to children who had stable diagnoses, both at 24 months (Cohen's d = .52) and at 36 months (d = .75). The magnitude of change in distance between the two time points was similar for the dynamic and stable groups (Cohen's d = .06), and diagnostic shifts were not associated with a large change. At the individual level, a few children in the dynamic group showed substantial change. CONCLUSIONS: Our results suggested that a diagnostic shift was largely due to a slight movement within a transition region between ASD and non-ASD. This fact highlights the need for more vigilant surveillance and intervention strategies. Young children with intermediate phenotypes may have an increased susceptibility to gain or lose their diagnosis at later ages, calling attention to the inherently dynamic nature of early ASD diagnoses.
Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico , Pré-Escolar , Estudos de Coortes , Diagnóstico Precoce , Humanos , Fenótipo , IrmãosRESUMO
The corpus callosum (CC) is the largest connective pathway in the human brain, linking cerebral hemispheres. There is longstanding debate in the scientific literature whether sex differences are evident in this structure, with many studies indicating the structure is larger in females. However, there are few data pertaining to this issue in infancy, during which time the most rapid developmental changes to the CC occur. In this study, we examined longitudinal brain imaging data collected from 104 infants at ages 6, 12, and 24 months. We identified sex differences in brain-size adjusted CC area and thickness characterized by a steeper rate of growth in males versus females from ages 6-24 months. In contrast to studies of older children and adults, CC size was larger for male compared to female infants. Based on diffusion tensor imaging data, we found that CC thickness is significantly associated with underlying microstructural organization. However, we observed no sex differences in the association between microstructure and thickness, suggesting that the role of factors such as axon density and/or myelination in determining CC size is generally equivalent between sexes. Finally, we found that CC length was negatively associated with nonverbal ability among females.
Assuntos
Desenvolvimento Infantil/fisiologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Caracteres Sexuais , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Imagem Multimodal/métodosRESUMO
BACKGROUND: Atypical sensory responsivity and sensory interests are now included in the DSM 5 diagnostic criteria for autism spectrum disorder (ASD) under the broad domain of restricted and repetitive behavior (RRB). However, relatively little is known about the emergence of sensory-related features and their relation to conventionally defined RRB in the first years of life. METHODS: Prospective, longitudinal parent-report data using the Sensory Experiences Questionnaire (SEQ) were collected for 331 high-risk toddlers (74 of whom met diagnostic criteria for ASD at age 2) and 135 low-risk controls. Longitudinal profiles for SEQ scores were compared between groups across ages 12-24 months. Associations between SEQ measures and measures of RRB subtypes (based on the Repetitive Behavior Scale, Revised) were also examined. RESULTS: Longitudinal profiles for all SEQ scores significantly differed between groups. SEQ scores were elevated for the ASD group from age 12 months, with differences becoming more pronounced across the 12-24 month interval. At both 12 and 24 months, most measures derived from the SEQ were significantly associated with all subtypes of RRB. CONCLUSIONS: These findings suggest that differences in sensory responsivity may be evident in high-risk infants later diagnosed with ASD in early toddlerhood, and that the magnitude of these differences increases over the second year of life. The high degree of association between SEQ scores and RRB supports the conceptual alignment of these features but also raises questions as to explanatory mechanisms.
Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtornos de Sensação/fisiopatologia , Transtorno do Espectro Autista/complicações , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Pais , Transtornos de Sensação/etiologiaRESUMO
Infant gross motor development is vital to adaptive function and predictive of both cognitive outcomes and neurodevelopmental disorders. However, little is known about neural systems underlying the emergence of walking and general gross motor abilities. Using resting state fcMRI, we identified functional brain networks associated with walking and gross motor scores in a mixed cross-sectional and longitudinal cohort of infants at high and low risk for autism spectrum disorder, who represent a dimensionally distributed range of motor function. At age 12 months, functional connectivity of motor and default mode networks was correlated with walking, whereas dorsal attention and posterior cingulo-opercular networks were implicated at age 24 months. Analyses of general gross motor function also revealed involvement of motor and default mode networks at 12 and 24 months, with dorsal attention, cingulo-opercular, frontoparietal, and subcortical networks additionally implicated at 24 months. These findings suggest that changes in network-level brain-behavior relationships underlie the emergence and consolidation of walking and gross motor abilities in the toddler period. This initial description of network substrates of early gross motor development may inform hypotheses regarding neural systems contributing to typical and atypical motor outcomes, as well as neurodevelopmental disorders associated with motor dysfunction.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Desenvolvimento Infantil/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Caminhada/fisiologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Imageamento por Ressonância Magnética/tendências , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimentoRESUMO
Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social-communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain-behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development.
Assuntos
Atenção/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Desenvolvimento Infantil/fisiologia , Pré-Escolar , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Testes Neuropsicológicos , Psicologia da CriançaRESUMO
Children's early language environments are related to later development. Little is known about this association in siblings of children with autism spectrum disorder (ASD), who often experience language delays or have ASD. Fifty-nine 9-month-old infants at high or low familial risk for ASD contributed full-day in-home language recordings. High-risk infants produced more vocalizations than low-risk peers; conversational turns and adult words did not differ by group. Vocalization differences were driven by a subgroup of "hypervocal" infants. Despite more vocalizations overall, these infants engaged in less social babbling during a standardized clinic assessment, and they experienced fewer conversational turns relative to their rate of vocalizations. Two ways in which these individual and environmental differences may relate to subsequent development are discussed.
Assuntos
Transtorno do Espectro Autista/fisiopatologia , Desenvolvimento Infantil/fisiologia , Comportamento do Lactente/fisiologia , Irmãos , Comportamento Social , Comportamento Verbal/fisiologia , Feminino , Humanos , Lactente , Masculino , Risco , Processamento de Sinais Assistido por ComputadorRESUMO
The association between developmental trajectories of language-related white matter fiber pathways from 6 to 24 months of age and individual differences in language production at 24 months of age was investigated. The splenium of the corpus callosum, a fiber pathway projecting through the posterior hub of the default mode network to occipital visual areas, was examined as well as pathways implicated in language function in the mature brain, including the arcuate fasciculi, uncinate fasciculi, and inferior longitudinal fasciculi. The hypothesis that the development of neural circuitry supporting domain-general orienting skills would relate to later language performance was tested in a large sample of typically developing infants. The present study included 77 infants with diffusion weighted MRI scans at 6, 12 and 24 months and language assessment at 24 months. The rate of change in splenium development varied significantly as a function of language production, such that children with greater change in fractional anisotropy (FA) from 6 to 24 months produced more words at 24 months. Contrary to findings from older children and adults, significant associations between language production and FA in the arcuate, uncinate, or left inferior longitudinal fasciculi were not observed. The current study highlights the importance of tracing brain development trajectories from infancy to fully elucidate emerging brain-behavior associations while also emphasizing the role of the splenium as a key node in the structural network that supports the acquisition of spoken language.
Assuntos
Desenvolvimento da Linguagem , Idioma , Vias Neurais/fisiologia , Inteligibilidade da Fala/fisiologia , Desenvolvimento Infantil , Corpo Caloso , Imagem de Difusão por Ressonância Magnética , Humanos , Lactente , Fibras Nervosas MielinizadasRESUMO
The quantification of local surface morphology in the human cortex is important for examining population differences as well as developmental changes in neurodegenerative or neurodevelopmental disorders. We propose a novel cortical shape measure, referred to as the 'shape complexity index' (SCI), that represents localized shape complexity as the difference between the observed distributions of local surface topology, as quantified by the shape index (SI) measure, to its best fitting simple topological model within a given neighborhood. We apply a relatively small, adaptive geodesic kernel to calculate the SCI. Due to the small size of the kernel, the proposed SCI measure captures fine differences of cortical shape. With this novel cortical feature, we aim to capture comparatively small local surface changes that capture a) the widening versus deepening of sulcal and gyral regions, as well as b) the emergence and development of secondary and tertiary sulci. Current cortical shape measures, such as the gyrification index (GI) or intrinsic curvature measures, investigate the cortical surface at a different scale and are less well suited to capture these particular cortical surface changes. In our experiments, the proposed SCI demonstrates higher complexity in the gyral/sulcal wall regions, lower complexity in wider gyral ridges and lowest complexity in wider sulcal fundus regions. In early postnatal brain development, our experiments show that SCI reveals a pattern of increased cortical shape complexity with age, as well as sexual dimorphisms in the insula, middle cingulate, parieto-occipital sulcal and Broca's regions. Overall, sex differences were greatest at 6months of age and were reduced at 24months, with the difference pattern switching from higher complexity in males at 6months to higher complexity in females at 24months. This is the first study of longitudinal, cortical complexity maturation and sex differences, in the early postnatal period from 6 to 24months of age with fine scale, cortical shape measures. These results provide information that complement previous studies of gyrification index in early brain development.
Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Córtex Cerebral/diagnóstico por imagem , Pré-Escolar , Feminino , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Lactente , Masculino , Sensibilidade e Especificidade , Técnica de SubtraçãoRESUMO
Numerous brain imaging studies indicate that the corpus callosum is smaller in older children and adults with autism spectrum disorder. However, there are no published studies examining the morphological development of this connective pathway in infants at-risk for the disorder. Magnetic resonance imaging data were collected from 270 infants at high familial risk for autism spectrum disorder and 108 low-risk controls at 6, 12 and 24 months of age, with 83% of infants contributing two or more data points. Fifty-seven children met criteria for ASD based on clinical-best estimate diagnosis at age 2 years. Corpora callosa were measured for area, length and thickness by automated segmentation. We found significantly increased corpus callosum area and thickness in children with autism spectrum disorder starting at 6 months of age. These differences were particularly robust in the anterior corpus callosum at the 6 and 12 month time points. Regression analysis indicated that radial diffusivity in this region, measured by diffusion tensor imaging, inversely predicted thickness. Measures of area and thickness in the first year of life were correlated with repetitive behaviours at age 2 years. In contrast to work from older children and adults, our findings suggest that the corpus callosum may be larger in infants who go on to develop autism spectrum disorder. This result was apparent with or without adjustment for total brain volume. Although we did not see a significant interaction between group and age, cross-sectional data indicated that area and thickness differences diminish by age 2 years. Regression data incorporating diffusion tensor imaging suggest that microstructural properties of callosal white matter, which includes myelination and axon composition, may explain group differences in morphology.
Assuntos
Transtornos Globais do Desenvolvimento Infantil/patologia , Corpo Caloso/patologia , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Lactente , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Adulto JovemRESUMO
BACKGROUND: Recent evidence suggests that restricted and repetitive behaviors may differentiate children who develop autism spectrum disorder (ASD) by late infancy. How these core symptoms manifest early in life, particularly among infants at high risk for the disorder, is not well characterized. METHODS: Prospective, longitudinal parent-report data (Repetitive Behavior Scales-Revised) were collected for 190 high-risk toddlers and 60 low-risk controls from 12 to 24 months of age. Forty-one high-risk children were classified with ASD at age 2. Profiles of repetitive behavior were compared between groups using generalized estimating equations. RESULTS: Longitudinal profiles for children diagnosed with ASD differed significantly from high- and low-risk children without the disorder on all measures of repetitive behavior. High-risk toddlers without ASD were intermediate to low risk and ASD positive counterparts. Toddlers with ASD showed significantly higher rates of repetitive behavior across subtypes at the 12-month time point. Repetitive behaviors were significantly correlated with adaptive behavior and socialization scores among children with ASD at 24 months of age, but were largely unrelated to measures of general cognitive ability. CONCLUSIONS: These findings suggest that as early as 12 months of age, a broad range of repetitive behaviors are highly elevated in children who go on to develop ASD. While some degree of repetitive behavior is elemental to typical early development, the extent of these behaviors among children who develop ASD appears highly atypical.
Assuntos
Transtorno Autístico/psicologia , Comportamento Estereotipado , Fatores Etários , Estudos de Casos e Controles , Desenvolvimento Infantil , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Estudos Longitudinais , MasculinoRESUMO
Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still not well characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS. Furthermore, we probed the underlying neuropathology by examining the progression of myelination in an AS mouse model. Methods: We conducted magnetic resonance imaging (MRI) on children with AS (n=32) and neurotypical controls (n=99) aged 0.5-12 years. In parallel, we examined myelination in postnatal Ube3a maternal-null mice (Ube3a m-/p+; AS model), Ube3a paternal-null mice (Ube3a m+/p-), and wildtype controls (Ube3a m+/p+) using immunohistochemistry, Western blotting, and electron microscopy. Results: Our data revealed that AS individuals exhibit significant reductions in brain volume by ~1 year of age, with WM reduced by 26% and gray matter by 21% by 6-12 years of age-approximately twice the reductions observed in the adult AS mouse model. In our AS mouse model, we saw a global delay in the onset of myelination, which normalized within days (likely corresponding to months or years in human development). This myelination delay is caused by the loss of UBE3A in neurons rather than UBE3A haploinsufficiency in oligodendrocytes. Interestingly, ultrastructural analyses did not reveal any abnormalities in myelinated or unmyelinated axons. Limitations: It is difficult to extrapolate the timing and duration of the myelination delay observed in AS model mice to individuals with AS. Conclusions: This study reveals WM deficits as a hallmark in children with AS, demonstrating for the first time that these deficits are already apparent at 1 year of age. Parallel studies in a mouse model of AS show that these deficits may be associated with delayed onset of myelination due to the loss of neuronal (but not glial) UBE3A. These findings emphasize the potential of WM as both a therapeutic target for interventions and a valuable biomarker for tracking the progression of AS and the effectiveness of potential treatments.
RESUMO
BACKGROUND: Specifying early developmental differences among neurodevelopmental disorders with distinct etiologies is critical to improving early identification and tailored intervention during the first years of life. Recent studies have uncovered important differences between infants with fragile X syndrome (FXS) and infants with familial history of autism spectrum disorder who go on to develop autism themselves (FH-ASD), including differences in brain development and behavior. Thus far, there have been no studies longitudinally investigating differential developmental skill profiles in FXS and FH-ASD infants. METHODS: The current study contrasted longitudinal trajectories of verbal (expressive and receptive language) and nonverbal (gross and fine motor, visual reception) skills in FXS and FH-ASD infants, compared to FH infants who did not develop ASD (FH-nonASD) and typically developing controls. RESULTS: Infants with FXS showed delays on a nonverbal composite compared to FH-ASD (as well as FH-nonASD and control) infants as early as 6 months of age. By 12 months an ordinal pattern of scores was established between groups on all domains tested, such that controls > FH-nonASD > FH-ASD > FXS. This pattern persisted through 24 months. Cognitive level differentially influenced developmental trajectories for FXS and FH-ASD. CONCLUSIONS: Our results demonstrate detectable group differences by 6 months between FXS and FH-ASD as well as differential trajectories on each domain throughout infancy. This work further highlights an earlier onset of global cognitive delays in FXS and, conversely, a protracted period of more slowly emerging delays in FH-ASD. Divergent neural and cognitive development in infancy between FXS and FH-ASD contributes to our understanding of important distinctions in the development and behavioral phenotype of these two groups.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Lactente , Humanos , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/psicologia , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/psicologia , Idioma , CogniçãoRESUMO
BACKGROUND: Common genetic variation has been shown to account for a large proportion of ASD heritability. Polygenic scores generated for autism spectrum disorder (ASD-PGS) using the most recent discovery data, however, explain less variance than expected, despite reporting significant associations with ASD and other ASD-related traits. Here, we investigate the extent to which information loss on the target study genome-wide microarray weakens the predictive power of the ASD-PGS. METHODS: We studied genotype data from three cohorts of individuals with high familial liability for ASD: The Early Autism Risk Longitudinal Investigation (EARLI), Markers of Autism Risk in Babies-Learning Early Signs (MARBLES), and the Infant Brain Imaging Study (IBIS), and one population-based sample, Study to Explore Early Development Phase I (SEED I). Individuals were genotyped on different microarrays ranging from 1 to 5 million sites. Coverage of the top 88 genome-wide suggestive variants implicated in the discovery was evaluated in all four studies before quality control (QC), after QC, and after imputation. We then created a novel method to assess coverage on the resulting ASD-PGS by correlating a PGS informed by a comprehensive list of variants to a PGS informed with only the available variants. RESULTS: Prior to imputations, None of the four cohorts directly or indirectly covered all 88 variants among the measured genotype data. After imputation, the two cohorts genotyped on 5-million arrays reached full coverage. Analysis of our novel metric showed generally high genome-wide coverage across all four studies, but a greater number of SNPs informing the ASD-PGS did not result in improved coverage according to our metric. LIMITATIONS: The studies we analyzed contained modest sample sizes. Our analyses included microarrays with more than 1-million sites, so smaller arrays such as Global Diversity and the PsychArray were not included. Our PGS metric for ASD is only generalizable to samples of European ancestries, though the coverage metric can be computed for traits that have sufficiently large-sized discovery findings in other ancestries. CONCLUSIONS: We show that commonly used genotyping microarrays have incomplete coverage for common ASD variants, and imputation cannot always recover lost information. Our novel metric provides an intuitive approach to reporting information loss in PGS and an alternative to reporting the total number of SNPs included in the PGS. While applied only to ASD here, this metric can easily be used with other traits.
Assuntos
Transtorno do Espectro Autista , Estudo de Associação Genômica Ampla , Humanos , Transtorno do Espectro Autista/genética , Herança Multifatorial , Predisposição Genética para Doença , Masculino , Feminino , Genótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Amygdala function is implicated in the pathogenesis of autism spectrum disorder (ASD) and anxiety. We investigated associations between early trajectories of amygdala growth and anxiety and ASD outcomes at school age in two longitudinal studies: high- and low-familial likelihood for ASD, Infant Brain Imaging Study (IBIS, n = 257) and typically developing (TD) community sample, Early Brain Development Study (EBDS, n = 158). Infants underwent MRI scanning at up to 3 timepoints from neonate to 24 months. Anxiety was assessed at 6-12 years. Linear multilevel modeling tested whether amygdala volume growth was associated with anxiety symptoms at school age. In the IBIS sample, children with higher anxiety showed accelerated amygdala growth from 6 to 24 months. ASD diagnosis and ASD familial likelihood were not significant predictors. In the EBDS sample, amygdala growth from birth to 24 months was associated with anxiety. More anxious children had smaller amygdala volume and slower rates of amygdala growth. We explore reasons for the contrasting results between high-familial likelihood for ASD and TD samples, grounding results in the broader literature of variable associations between early amygdala volume and later anxiety. Results have the potential to identify mechanisms linking early amygdala growth to later anxiety in certain groups.
Assuntos
Transtorno do Espectro Autista , Criança , Lactente , Recém-Nascido , Humanos , Ansiedade , Transtornos de Ansiedade , Encéfalo , Imageamento por Ressonância Magnética/métodos , Tonsila do CerebeloRESUMO
Elucidating the neural basis of joint attention in infancy promises to yield important insights into the development of language and social cognition, and directly informs developmental models of autism. We describe a new method for evaluating responding to joint attention performance in infancy that highlights the 9- to 10-month period as a time interval of maximal individual differences. We then demonstrate that fractional anisotropy in the right uncinate fasciculus, a white matter fiber bundle connecting the amygdala to the ventral-medial prefrontal cortex and anterior temporal pole, measured in 6-month-olds predicts individual differences in responding to joint attention at 9 months of age. The white matter microstructure of the right uncinate was not related to receptive language ability at 9 months. These findings suggest that the development of core nonverbal social communication skills in infancy is largely supported by preceding developments within right lateralized frontotemporal brain systems.
Assuntos
Atenção , Transtorno Autístico/fisiopatologia , Lobo Frontal/patologia , Tonsila do Cerebelo/patologia , Anisotropia , Comportamento , Encéfalo/patologia , Mapeamento Encefálico/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Características da Família , Feminino , Humanos , Individualidade , Lactente , Aprendizagem , Masculino , Fibras Nervosas Mielinizadas/patologia , Vias Neurais , Fatores de TempoRESUMO
This study investigated the extent to which sensory responsivity in infancy contributes to adaptive behavior development among toddlers at high-familial likelihood for autism. Prospective, longitudinal data were analyzed for 218 children, 58 of whom received an autism diagnosis. Results indicated that sensory profiles at age one year (hyperresponsivity, sensory seeking) were negatively associated with later adaptive behavior, particularly for socialization, at age 3 years regardless of diagnostic status. These results suggest that early differences in sensory responsivity may have downstream developmental consequences related to social development among young children with high-familial likelihood for autism.