Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Breast Cancer Res ; 25(1): 88, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496019

RESUMO

Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, with limited therapeutic options readily available. Immunotherapy such as immune checkpoint inhibition has been investigated in TNBC but still encounters low overall response. Neutrophils, the most abundant leukocytes in the body, are increasingly recognized as an active cancer-modulating entity. In the bloodstream, neutrophils escort circulating tumor cells to promote their survival and stimulate their proliferation and metastasis. In the tumor microenvironment, neutrophils modulate the immune milieu through polarization between the anti-tumor and the pro-tumor phenotypes. Through a comprehensive review of recently published literature, it is evident that neutrophils are an important player in TNBC immunobiology and can be used as an important prognostic marker of TNBC. Particularly, in their pro-tumor form, neutrophils facilitate TNBC metastasis through formation of neutrophil extracellular traps and the pre-metastatic niche. These findings will help advance the potential utilization of neutrophils as a therapeutic target in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neutrófilos/patologia , Microambiente Tumoral
2.
Biochem Biophys Res Commun ; 589: 85-91, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34896780

RESUMO

Chemotherapy is the mainstay of treatment for prostate cancer, with paclitaxel being commonly used for hormone-resistant prostate cancer. However, drug resistance often develops and leads to treatment failure in a variety of prostate cancer patients. Therefore, it is necessary to enhance the sensitivity of prostate cancer to chemotherapy. Lovastatin (LV) is a natural compound extracted from Monascus-fermented foods and is an inhibitor of HMG-CoA reductase (HMGCR), which has been approved by the FDA for hyperlipidemia treatment. We have previously found that LV could inhibit the proliferation of refractory cancer cells. Up to now, the effect of LV on chemosensitization and the mechanisms involved have not been evaluated in drug-resistant prostate cancer. In this study, we used prostate cancer cell line PC3 and its paclitaxel-resistant counterpart PC3-TxR as the cell model. Alamar Blue cell viability assay showed that LV and paclitaxel each conferred concentration-dependent inhibition of PC3-TxR cells. When paclitaxel was combined with LV, the proliferation of PC3-TxR cells was synergistically inhibited, as demonstrated by combination index <1. Moreover, colony formation decreased while apoptosis increased in paclitaxel plus LV group compared with paclitaxel alone group. Quantitative RT-PCR showed that the combination of paclitaxel and LV could significantly reduce the expression of CYP2C8, an important drug-metabolizing enzyme. Bioinformatics analysis from the TCGA database showed that CYP2C8 expression was negatively correlated with progression-free survival (PFS) in prostate cancer patients. Our results suggest that LV might increase the sensitivity of resistant prostate cancer cells to paclitaxel through inhibition of CYP2C8 and could be utilized as a chemosensitizer for paclitaxel-resistant prostate cancer cells.


Assuntos
Inibidores do Citocromo P-450 CYP2C8/farmacologia , Citocromo P-450 CYP2C8/metabolismo , Resistencia a Medicamentos Antineoplásicos , Lovastatina/farmacologia , Paclitaxel/farmacologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Citocromo P-450 CYP2C8/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Masculino , Modelos Biológicos , Prognóstico , Neoplasias da Próstata/genética
3.
BMC Cancer ; 19(1): 831, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443698

RESUMO

BACKGROUND: Metastasis is responsible for the majority of deaths in a variety of cancer types, including breast cancer. Although several factors or biomarkers have been identified to predict the outcome of patients with breast cancer, few studies have been conducted to identify metastasis-associated biomarkers. METHODS: Quantitative iTRAQ proteomics analysis was used to detect differentially expressed proteins between lymph node metastases and their paired primary tumor tissues from 23 patients with metastatic breast cancer. Immunohistochemistry was performed to validate the expression of two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins in 190 paraffin-embedded tissue samples. These four proteins were further analyzed for their correlation with clinicopathological features in 190 breast cancer patients. RESULTS: We identified 637 differentially regulated proteins (397 upregulated and 240 downregulated) in lymph node metastases compared with their paired primary tumor tissues. Data are available via ProteomeXchange with identifier PXD013931. Furthermore, bioinformatics analysis using GEO profiling confirmed the difference in the expression of EpCAM between metastases and primary tumors tissues. Two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins were associated with the progression of breast cancer. Obviously, EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. We further identified αB-crystallin as an independent biomarker to predict lymph node metastasis and the outcome of breast cancer patients. CONCLUSION: We have identified that EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. αB-crystallin, a stress-related protein that has recently been shown to be important for cell invasion and survival, was identified as a potential prognostic biomarker to predict the outcome of breast cancer patients.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Molécula de Adesão da Célula Epitelial/genética , Cadeia B de alfa-Cristalina/genética , Neoplasias da Mama/mortalidade , Biologia Computacional/métodos , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Metástase Neoplásica , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais , Proteoma , Proteômica/métodos , Cadeia B de alfa-Cristalina/metabolismo
4.
Anticancer Drugs ; 29(1): 1-9, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29099416

RESUMO

Doxorubicin (DOX), also known as adriamycin, is a DNA topoisomerase II inhibitor and belongs to the family of anthracycline anticancer drugs. DOX is used for the treatment of a wide variety of cancer types. However, resistance among cancer cells has emerged as a major barrier to effective treatment using DOX. Currently, the role of autophagy in cancer resistance to DOX and the mechanisms involved have become one of the areas of intense investigation. More and more preclinical data are being obtained on reversing DOX resistance through modulation of autophagy as one of the promising therapeutic strategies. This review summarizes the recent advances in autophagy-targeting therapies that overcome DOX resistance from in-vitro studies to animal models for exploration of novel delivery systems. In-depth understanding of the mechanisms of autophagy regulation in relation to DOX resistance and development of molecularly targeted autophagy-modulating agents will provide a promising therapeutic strategy for overcoming DOX resistance in cancer treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Autofagia/fisiologia , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Autofagia/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos
5.
J Cell Mol Med ; 21(9): 2068-2076, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28296156

RESUMO

Activation of apoptotic signalling in endothelial cells contributes to the detrimental effects of a variety of pathological stimuli. In investigating the molecular events underlying the anti-apoptotic effect of human plasma in cultured human endothelial cells, we unexpectedly uncovered a novel mechanism of apoptosis suppression by human plasma through an interaction between two previously unrelated proteins. Human plasma inhibited hypoxia-serum deprivation-induced apoptosis and stimulated BADS136 and AktS473 phosphorylation. Akt1 silencing reversed part (~52%) of the anti-apoptotic effect of human plasma, suggesting the existence of additional mechanisms mediating the anti-apoptotic effect other than Akt signalling. Human plasma disrupted the interaction of BAD with protein phosphatase 1 (PP1). Mass spectrometry identified fourteen PP1-interacting proteins induced by human plasma. Notably, a group of serine protease inhibitors including plasminogen activator inhibitor 1 (PAI1), a major inhibitor of fibrinolysis, were involved. Silencing of PAI1 attenuated the anti-apoptotic effect of human plasma. Furthermore, combined Akt1 and PAI1 silencing attenuated the majority of the anti-apoptotic effect of human plasma. We conclude that human plasma protects against endothelial cell apoptosis through sustained BAD phosphorylation, which is achieved by, at least in part, a novel interaction between PP1 with PAI1.


Assuntos
Apoptose , Células Endoteliais/metabolismo , Plasma/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteína Fosfatase 1/metabolismo , Hipóxia Celular , Citoproteção , Inativação Gênica , Humanos , Modelos Biológicos , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
6.
Int J Biol Sci ; 20(3): 1042-1044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322120

RESUMO

Disulfidptosis occurs as a result of the accumulation of intracellular cystine followed by disulfide stress in actin cytoskeleton proteins due to a reduction of NADPH produced through the pentose phosphate pathway in cells with high expression of SLC7A11. It is a cell death caused by the redox imbalance resulting from the disruption of amino acid metabolism and glucose metabolism. The discovery of disulfidptosis has sparked immense enthusiasm, but there are numerous unresolved issues that need to be addressed. Solutions to these riddles will provide insights into the detailed mechanisms and the pathophysiological relevance of disulfidptosis and utilizing disulfidptosis as an actionable therapeutic target.


Assuntos
Dissulfetos , Proteínas dos Microfilamentos , Morte Celular , NADP
7.
J Cancer ; 15(11): 3272-3283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817858

RESUMO

Despite advances in the treatment of breast cancer, the disease continues to exhibit high global morbidity and mortality. The importance of neutrophils in cancer development has been increasingly recognized. Neutrophil extracellular traps (NETs) are web-like structures released into the extracellular space by activated neutrophils, serving as a potential antimicrobial mechanism for capturing and eliminating microorganisms. The roles played by NETs in cancer development have been a subject of intense research in the last decade. In breast cancer, current evidence suggests that NETs are involved in various stages of cancer development, particularly during metastasis. In this review, we try to provide an updated overview of the roles played by NETs in breast cancer metastasis. These include: 1) facilitating systemic dissemination of cancer cells; 2) promoting cancer-associated inflammation; 3) facilitating cancer-associated thrombosis; 4) facilitating pre-metastatic niche formation; and 5) awakening dormant cancer cells. The translational implications of NETs in breast cancer treatment are also discussed. Understanding the relationship between NETs and breast cancer metastasis is expected to provide important insights for developing new therapeutic strategies for breast cancer patients.

8.
J Cancer ; 15(17): 5636-5642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308680

RESUMO

Actin, primarily a cytoplasmic cytoskeleton protein, is transported in and out of the nucleus with the help of actin-binding proteins (ABPs). Actin exists in two forms, i.e., monomeric globular (G-actin) and polymerized filamentous (F-actin). While G-actin promotes gene transcription by associating with RNA polymerases, F-actin can inhibit this effect in the nucleus. Unexpectedly, we found that lovastatin, an FDA-approved lipid-lowering drug, induces actin redistribution and its translocation into the nucleus in triple-negative breast cancer (TNBC) cancer stem cells. Lovastatin treatment also decreased levels of rRNAs and stemness markers, which are transcription products of RNA Pol I and Pol II, respectively. Bioinformatics analysis showed that actin genes were positively correlated with ABP genes involved in the translocation/polymerization and transcriptional regulation of nuclear actin in breast cancer. Similar correlations were found between actin genes and RNA Pol I genes and stemness-related genes. We propose a model to explain the roles of lovastatin in inducing nucleolar stress and inhibiting stemness in TNBC cancer stem cells. In our model, lovastatin induces translocation/accumulation of F-actin in the nucleus/nucleolus, which, in turn, induces nucleolar stress and stemness inhibition by suppressing the synthesis of rRNAs and decreasing the expression of stemness-related genes. Our model has opened up a new field of research on the roles of nuclear actin in cancer biology, offering potential therapeutic targets for the treatment of TNBC.

9.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617541

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Proteínas Ribossômicas/genética , Proteínas Nucleares , Ribossomos/genética , Proteínas Mitocondriais
10.
J Cancer ; 13(12): 3368-3377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186902

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited therapeutic options available. We have recently demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, suppresses TNBC cell proliferation and stemness properties in vitro and in vivo. However, the mechanisms through which lovastatin inhibits TNBC cells are not fully understood. Here, we used 1H NMR-based metabolomic profiling to investigate lovastatin-induced metabolic changes in TNBC cell line MDA-MB-231. Among the 46 metabolites identified, lactate demonstrated the highest variable importance in projection (VIP) score. Glycolysis stress test revealed that lovastatin significantly decreased the extracellular acidification rate (ECAR) in MDA-MB-231 cells. Furthermore, lovastatin treatment down-regulated the levels of glycolysis-related proteins including GLUT1, PFK1, and PKM2 in MDA-MB-231 but not non-TNBC MDA-MB-453 cells. In addition, lovastatin induced autophagy as evidenced by increased LC3 puncta formation and LC3-II/I ratio, increased AMPK phosphorylation, and decreased Akt phosphorylation. We also revealed the interaction between the glycolytic enzyme hexokinase 2 (HK2) and the mitochondrial membrane protein voltage-dependent anion channel 1 (VDAC1), an important regulator of autophagy. Further bioinformatics analysis revealed that VDAC1 was expressed at a higher level in breast cancer than normal tissues and higher level of VDAC1 predicted poorer survival outcomes in breast cancer patients. The present study suggests that lovastatin might exert anti-tumor activity by reprogramming glycolysis toward autophagy in TNBC cells through HK2-VDAC1 interaction.

11.
Front Oncol ; 12: 731528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174077

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks approved specific targeted therapies. One of the major reasons why TNBC is difficult to treat is the high proportion of cancer stem cells within the tumor tissue. Nucleolus is the location of ribosome biogenesis which is frequently overactivated in cancer cells and overactivation of ribosome biogenesis frequently drives the malignant transformation of cancer. Nucleolar and coiled-body phosphoprotein 1 (NOLC1) is a nucleolar protein responsible for nucleolus organization and rRNA synthesis and plays an important role in ribosome biogenesis. However, the correlation of NOLC1 expression with patient prognosis and its value as a therapeutic target have not been evaluated in TNBC. In the current study, based on bioinformatics analysis of the online databases, we found that the expression of NOLC1 was higher in breast cancer tissues than normal tissues, and NOLC1 was expressed at a higher level in TNBC than other subtypes of breast cancer. GSEA analysis revealed that stemness-related pathways were significantly enriched in breast cancer with high NOLC1 gene expression. Further analyses using gene expression profiling interactive analysis 2 (GEPIA2), tumor immune estimation resource (TIMER) and search tool for retrieval of interacting genes/proteins (STRING) demonstrated that NOLC1 was significantly associated with stemness in both all breast cancer and basal-like breast cancer/TNBC patients at both gene and protein levels. Knockdown of NOLC1 by siRNA decreased the protein level of the key stemness regulators MYC and ALDH and inhibited the sphere-forming capacity in TNBC cell line MDA-MB-231. Univariate and multivariate Cox regression analyses demonstrated that NOLC1 was an independent risk factor for overall survival in breast cancer. PrognoScan and Kaplan-Meier plotter analyses revealed that high expression of NOLC1 was associated with poor prognosis in both all breast cancer and TNBC patients. Further immunohistochemical analysis of breast cancer patient samples revealed that TNBC cells had a lower level of NOLC1 in the nucleus compared with non-TNBC cells. These findings suggest that NOLC1 is closely associated with the stemness properties of TNBC and represents a potential therapeutic target for TNBC.

12.
Front Oncol ; 11: 656687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150623

RESUMO

Triple-negative breast cancer (TNBC) is more aggressive and has poorer prognosis compared to other subtypes of breast cancer. Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal-like cells capable of migration, invasion, and metastasis. Recently, we have demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor and a lipid-lowering drug, could inhibit stemness properties of cancer stem cells (CSCs) derived from TNBC cell in vitro and in vivo. This study is aimed at investigating whether lovastatin inhibits TNBC CSCs by inhibiting EMT and suppressing metastasis and the mechanism involved. In the present study, we found that lovastatin dysregulated lysine succinylation of cytoskeleton-associated proteins in CSCs derived from TNBC MDA-MB-231 cell. Lovastatin inhibited EMT as demonstrated by down-regulation of the protein levels of Vimentin and Twist in MDA-MB-231 CSCs in vitro and vivo and by reversal of TGF-ß1-induced morphological change in MCF10A cells. Lovastatin also inhibited the migration of MDA-MB-231 CSCs. The disruption of cytoskeleton in TNBC CSCs by lovastatin was demonstrated by the reduction of the number of pseudopodia and the relocation of F-actin cytoskeleton. Combination of lovastatin with doxorubicin synergistically inhibited liver metastasis of MDA-MB-231 CSCs. Bioinformatics analysis revealed that higher expression levels of cytoskeleton-associated genes were characteristic of TNBC and predicted survival outcomes in breast cancer patients. These data suggested that lovastatin could inhibit the EMT and metastasis of TNBC CSCs in vitro and in vivo through dysregulation of cytoskeleton-associated proteins.

13.
J Cancer ; 12(13): 4075-4085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093811

RESUMO

Non-small cell lung cancer (NSCLC) is one of the major cancer-related causes of morbidity and mortality worldwide. Despite the progress in lung cancer treatment, there is still an urgent need to discover novel therapeutic agents for NSCLC. Natural products represent a rich source of bioactive compounds. Through a natural compound library screening assay, we found that a group of anti-insect drugs had significant inhibitory effect on the proliferation of NSCLC cells. Among the anti-insect drugs, two derivatives of artemisinin, i.e., artesunate (ART) and dihydroartemisinin (DHA), a group of well-known anti-malarial drugs, have been shown to possess selective anti-cancer properties. Mechanistically, we found that ART and DHA induced apoptosis of A549 cells as evidenced by decreased protein level of VDAC and increased caspase 3 cleavage. Furthermore, cystine/glutamate transporter (xCT), a core negative regulator of ferroptosis, was downregulated by ART and DHA. The mRNA level of transferrin receptor (TFRC), a positive regulator of ferroptosis, was upregulated by ART and DHA. ART/DHA-induced apoptosis and ferroptosis in NSCLC cells were partly reversed by N-Acetyl-L-cysteine (NAC), a ROS scavenger, and ferrostatin-1, a ferroptosis inhibitor, respectively. These results suggest that artemisinin derivatives have anti-NSCLC activity through induction of ROS-dependent apoptosis/ferroptosis. Our findings provide the experimental basis for the potential application of artemisinin derivatives as a class of novel therapeutic drugs for NSCLC.

14.
Biomater Sci ; 9(6): 2020-2031, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33439161

RESUMO

Colorectal cancer (CRC) is the third most common cancer around the world. Recent findings suggest that cancer stem cells (CSCs) play a pivotal role in the resistance to current therapeutic modalities, including surgery and chemotherapy. Photodynamic therapy (PDT) is a promising non-invasive therapeutic strategy for advanced metastatic CRC. Traditional photosensitizers such as pyropheophorbide-a (Pyro) lack tumor selectivity, causing unwanted treatment-related toxicity to the surrounding normal tissue. In order to enhance the targeting properties of Pyro, we synthesize a novel photosensitizer, CD133-Pyro, via the conjugation of Pyro to a peptide domain targeting CD133, which is highly expressed on CRC CSCs and correlated with poor prognosis of CRC patients. We demonstrate that CD133-Pyro possesses the targeted delivery capacity both in CRC CSCs derived from HT29 and SW620 cell lines and in a xenograft mouse model of tumor growth. CD133-Pyro PDT can promote the production of reactive oxygen species (ROS), suppress the stemness properties, and induce autophagic cell death in CRC CSCs. Furthermore, CD133-Pyro PDT has a potent inhibitory effect on CRC CSC-derived xenograft tumors in nude mice. These findings may offer a useful and important strategy for the treatment of CRC through targeting CSCs.


Assuntos
Neoplasias Colorretais , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas , Peptídeos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico
15.
J Cancer ; 11(13): 3713-3716, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328175

RESUMO

Effective treatment modality for triple-negative breast cancer (TNBC) is currently lacking due to the absence of defined receptor targets. Recently, we have demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor and a lipid-lowering drug, can selectively inhibit TNBC by targeting cancer stem cells in vivo and in vitro. Interestingly, we found that lovastatin induced the reappearance of human epidermal growth factor receptor 2 (HER2), one of the triple receptors that are missing in TNBC. This prompted us to explore the possibility of regaining sensitivity of TNBC cancer stem cells to receptor tyrosine kinase-targeting drugs. We found that while the combination of lovastatin with a HER2 inhibitor was not sufficient to show synergism, addition of an epidermal growth factor receptor (EGFR/HER1) inhibitor to this combination resulted in significant synergistic inhibitory effect on cell viability. Our findings provide a potential novel strategy of designing a cocktail composed of a lipid-lowering drug and two receptor tyrosine kinase inhibitors for the treatment of TNBC.

16.
Int J Cancer ; 122(1): 209-18, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17847032

RESUMO

Matrix metalloproteinases (MMPs) are proteolytic enzymes that play critical roles in the pathogenesis of human cancers. Clinical trials using synthetic small molecule MMP inhibitors have been carried out but with little success. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors that block the extracellular matrix-degrading activity of MMPs. Here, we investigated the possibilities of genetically modifying human bones with TIMPs to create a high-TIMP bone microenvironment, which is hostile to metastatic prostate cancer cells using adenovirus-mediated gene transfer technology and SCID-hu end-organ colonization mouse model. Two strategies were used to achieve bone-specific TIMP expression: (i) ex vivo bone adenoviral infection followed by in vivo bone implantation; and (ii) ex vivo BMS cell infection followed by injection into in vivo implanted human fetal bones. PC-3 prostate cancer cells were injected into human fetal bones 4 weeks after implantation in SCID mice. In vitro, adenovirus-mediated expression of TIMP-1 or TIMP-2 in bone fragments inhibited MMP-2 activity, bone turnover and prostate cancer cell-induced proteolytic degradation as determined by gelatin zymography, calcium measurement and DQ protein quenched fluorescence assay, respectively. In vivo, immunohistochemistry confirmed TIMP-2 expression in AdTIMP-2-infected bone implants 4 weeks after implantation in SCID mice. Mice receiving AdTIMP-treated bone fragments showed significantly reduced PC-3-induced osteolysis, osteoclast recruitment and bone turnover in the implanted bones. We propose that adenoviral gene transfer of TIMP-1 and TIMP-2 can prevent the proteolytic activity of prostate cancer cells in bone and that enhancing anti-proteolytic defense mechanisms in target organs represents a promising form of prostate cancer gene therapy.


Assuntos
Adenoviridae/genética , Osso e Ossos/metabolismo , Osteólise/prevenção & controle , Neoplasias da Próstata/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Animais , Western Blotting , Medula Óssea/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Terapia Genética , Vetores Genéticos , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos SCID , Osteoclastos/metabolismo , Neoplasias da Próstata/patologia , Ligante RANK/metabolismo , RNA Mensageiro , Células Estromais/metabolismo , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-2/biossíntese , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Cancer ; 9(20): 3723-3727, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405843

RESUMO

The nucleolus is a dynamic structure that has roles in various physiological and pathophysiological processes. Perturbations on many aspects of the nucleolar functions are thought to cause "nucleolar stress", which occurs in response to a variety of chemotherapeutic drugs. The main characteristic changes of nucleolar stress include: 1) reduction of the size and volume of the nucleolus; 2) inhibition of RNA Pol I-mediated rRNA synthesis; and 3) nucleoplasmic translocation of nucleolar stress-related proteins. In studying the apoptosis-inducing effect of the natural compound lovastatin (LV) on breast cancer stem cells, we unexpectedly uncovered a novel form of nucleolar stress, which we call "reverse nucleolar stress". In our system, the canonical nucleolus stress inducer doxorubicin caused nucleoplasmic translocation of the nucleolar protein NPM and complete abolishment of Nolc1, an NPM-interacting protein and an activator of rRNA transcription. In contrast, the reverse nucleolar stress induced by LV is manifested as a more localized perinucleolar distribution of NPM and an increase in the protein level of Nolc1. Furthermore, translocation of the ribosomal protein RPL3 from the cytoplasm to the nucleolus and increased AgNOR staining were observed. These changes characterize a novel pattern of nucleolar stress doubtlessly distinguishable from the canonical one. The functional consequences of reverse nucleolar stress are not clear at present but may presumably be related to cell death or even normalization of the stressed cell. The discovery of reverse nucleolar stress opens up a new area of research in molecular and cellular biology and might have important implications in cancer therapy.

18.
ACS Appl Mater Interfaces ; 10(8): 7022-7030, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29405062

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a higher risk in younger women and a poorer prognosis and without targeted therapies available currently. Cancer stem cells (CSCs) are increasingly recognized as the main cause of treatment failure and tumor recurrence. The present paper reports the encapsulation of lovastatin (LV) into cerasomes. Compared with free LV, cerasome-encapsulated LV (C-LV) nanohybrids showed cytotoxicity to MDA-MB-231 CSCs in a dose- and time-dependent manner. Furthermore, intravenous injection of C-LV nanohybrids resulted in a significant tumor size reduction in a dose-dependent manner in xenograft tumors derived from subcutaneous inoculation of MDA-MB-231 cells. Furthermore, histopathological and/or immunohistochemical analysis revealed that C-LV nanohybrids significantly induced mammary gland formation and apoptosis and inhibited angiogenesis, the CSC phenotype, and the epithelial-to-mesenchymal transition in xenograft tumors. Most importantly, C-LV nanohybrids were found to be more effective than free LV in inhibiting the growth of breast cancer xenografts and the stemness properties in vivo. To the best of our knowledge, ours is the first demonstration of nanohybrids for efficient inhibition of CSCs derived from TNBC, offering a new option for the TNBC treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Lovastatina , Células-Tronco Neoplásicas
19.
Clin Exp Metastasis ; 24(2): 107-19, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17370040

RESUMO

Lung cancer often metastasizes to bone in patients with advanced disease. Identification of the factors involved in the interactions between lung cancer cells and bone will improve the prevention and treatment of bone metastases. We identified changes in metastasis-related gene expression of human HARA lung squamous carcinoma cells co-cultured with neonatal mouse calvariae using a pathway-specific microarray analysis. Nine genes were up-regulated and two genes down-regulated in HARA cells co-cultured with mouse calvariae. Five of the nine up-regulated genes, including caveolin 1, CD44, EphB2, ezrin, and Parathyroid hormone-related protein (PTHrP), and one down-regulated gene, SLPI, were further confirmed by Reverse transcription-polymerase chain reaction (RT-PCR). A mouse model was subsequently used to study the role of PTHrP and ezrin in bone metastasis in vivo. PTHrP (all three isoforms) and ezrin were up-regulated in HARA cells at sites of bone metastasis as detected by RT-PCR and immunohistochemistry. The PTHrP 141 mRNA isoform was increased by the greatest extent (13.9-fold) in bone metastases compared to PTHrP 139 and PTHrP 173 mRNA. We then generated a HARA cell line in which PTHrP expression was inducibly silenced by RNA interference. Silencing of PTHrP expression caused significant reduction of submembranous F-actin and decreased HARA cell invasion. Ezrin up-regulation was confirmed by Western blots on HARA cells co-cultured with adult mouse long bones. Further, Transforming growth factor beta (TGF-beta) was identified as one of the factors in the bone microenvironment that was responsible for the up-regulation of ezrin. The identification of PTHrP and ezrin as important regulators of lung cancer bone metastasis offers new mechanistic insights into the metastasis of lung cancer and provides potential targets for the prevention and treatment of lung cancer metastasis.


Assuntos
Neoplasias Ósseas/genética , Proteínas do Citoesqueleto/genética , Neoplasias Pulmonares/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Regulação para Cima , Animais , Sequência de Bases , Western Blotting , Neoplasias Ósseas/secundário , Técnicas de Cocultura , Proteínas do Citoesqueleto/metabolismo , Inativação Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Sci China C Life Sci ; 50(2): 242-50, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17447032

RESUMO

Apomixis is a means of asexual reproduction by which plants produce embryos without fertilization and meiosis, therefore the embryo is of clonal and maternal origin. Interspecific hybrids between diploid B. vulgaris (2n=2x=18) and tetraploid B. corolliflora (2n=4x=36) were established, and then back-crossed with B. vulgaris. Among their offspring, monosomic addition line M14 (2n=2x=18+1) was selected because of the apomictic phenotype. We documented chromosome transmission from B. corolliflora into M14 by using genomic in situ hybridization (GISH). Suppression of cross-hybridization by blocking DNA was not necessary, indicating that the investigated Beta genome contains sufficient species-specific DNA, thus enabling the determination of genomic composition of the hybrids. We analyzed BAC microarrays of B. corolliflora chromosome 9 by using fluorescence-specific mRNA of B. vulgaris and Beta M14. BAC clones 16-M11 and 26-L15 were detected as fluorescence-specifics of BAC DNA of Beta M14. Then both BAC clones 16-M11 and 26-L15 were in situ hybridized to M14 chromosomes. The two hybridized BAC clones were located close to the telomere region of the long arm of a single chromosome 9, and showed hemizygosity. The results of BAC microarrays showed that these developments of embryo and endosperm have conservative expression patterns, indicating that sexual reproduction and apomixis have an interrelated pathway with common regulatory components and that the induction of a modified sexual reproduction program may enable the manifestation of apomixis in Beta species. It would be sufficient for the expression of apomixes with those apomictic-specific genes on chromosome 9 of B. corolliflora.


Assuntos
Beta vulgaris/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Diploide , Hibridização In Situ , Hibridização in Situ Fluorescente , Análise de Sequência com Séries de Oligonucleotídeos , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA