Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(5): 2142-2151, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258616

RESUMO

While three-dimensional (3D) DNA walking amplifiers hold considerable promise in the construction of advanced DNA-based fluorescent biosensors for bioimaging, they encounter certain difficulties such as inadequate sensitivity, premature activation, the need for exogenous propelling forces, and low reaction rates. In this contribution, a variety of profitable solutions have been explored. First, a catalytic hairpin assembly (CHA)-achieved nonenzymatic isothermal nucleic acid amplification is integrated to enhance sensitivity. Subsequently, one DNA component is simply functionalized with a photocleavage-bond to conduct a photoresponsive manner, whereby the target recognition occurs only when the biosensor is exposed to an external ultraviolet light source, overcoming premature activation during biodelivery. Furthermore, a special self-propelling walking mechanism is implemented by reducing biothiols to MnO2 nanosheets, thereby propelling forces that are self-supplied to a Mn2+-reliant DNAzyme. By carrying the biosensing system with a DNA molecular framework to induce a unique concentration localization effect, the nucleic acid contact reaction rate is notably elevated by 6 times. Following these, an ultrasensitive in vitro detection performance with a limit of detection down to 2.89 fM is verified for a cancer-correlated microRNA biomarker (miRNA-21). Of particular importance, our multiple concepts combined 3D DNA walking amplifier that enables highly efficient fluorescence bioimaging in live cells and even bodies, exhibiting a favorable application prospect in disease analysis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , DNA Catalítico/química , Compostos de Manganês , Óxidos , DNA/química , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Limite de Detecção
2.
World J Urol ; 41(3): 865-872, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36757468

RESUMO

INTRODUCTION: Ureteral access sheath (UAS) and irrigation are used in flexible ureteroscopy (fURS). Both conventional UAS (cUAS) and vacuum-assisted UAS (vaUAS) are currently available. Irrigation increases the intrarenal pressure (IRP). Our objectives were to study the effects of various irrigation rates on IRP using different sizes of fURS in different sizes and functions of UAS. MATERIALS AND METHODS: Ten freshly harvested porcine kidneys served as the study subjects. 11/13F and 12/14F cUAS and vaUAS with 2.8 mm and 3.2 mm fURS were experimented on in various scope/sheath combinations. 6F pressure monitor catheters were placed into upper, middle, and lower calyces. IRPs were recorded under different irrigation rates in cUAS and vaUAS, with either 150 or 300 mmHg aspiration pressures, and with air vent either open or closed. RESULTS: 12/14F cUAS with 2.8 mm fURS could maintain IRPs below 35 mmHg with irrigation rates up to 200 cc/min. With 3.2 mm fURS, the rate dropped to 110-120 cc/min. With 12/14F vaUAS and vent closed, the IRP remained less than 5 mmHg at 200 cc/min irrigation for both fURS. For 11/13F cUAS, the < 35 mmHg threshold for 2.8 mm fURS was 80-90 cc/min; for 3.2 mm fURS, it was 30-40 cc/min. For 11/13F vaUAS with vent closed, IRPs remained < 5 mmHg at 200 cc/min irrigation for both scopes. CONCLUSION: Both 12F cUAS and vaUAS can be used safely with 2.8 mm fURS up to 200 cc/min irrigation. With either a smaller sheath or a larger scope, vaUAS with vent closed can maintain IRP in a safe range up 200 cc/min irrigation. vaUAS with vent open performed marginally better than cUAS.


Assuntos
Cálculos Renais , Ureteroscópios , Suínos , Animais , Ureteroscopia , Pressão , Irrigação Terapêutica , Rim , Cálculos Renais/terapia
3.
BMC Urol ; 23(1): 186, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968670

RESUMO

BACKGROUND: Kidney renal clear cell carcinoma (KIRC) is a common malignant tumor of the urinary system. This study aims to develop new biomarkers for KIRC and explore the impact of biomarkers on the immunotherapeutic efficacy for KIRC, providing a theoretical basis for the treatment of KIRC patients. METHODS: Transcriptome data for KIRC was obtained from the The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Weighted gene co-expression network analysis identified KIRC-related modules of long noncoding RNAs (lncRNAs). Intersection analysis was performed differentially expressed lncRNAs between KIRC and normal control samples, and lncRNAs associated with N(7)-methylguanosine (m7G), resulting in differentially expressed m7G-associated lncRNAs in KIRC patients (DE-m7G-lncRNAs). Machine Learning was employed to select biomarkers for KIRC. The prognostic value of biomarkers and clinical features was evaluated using Kaplan-Meier (K-M) survival analysis, univariate and multivariate Cox regression analysis. A nomogram was constructed based on biomarkers and clinical features, and its efficacy was evaluated using calibration curves and decision curves. Functional enrichment analysis was performed to investigate the functional enrichment of biomarkers. Correlation analysis was conducted to explore the relationship between biomarkers and immune cell infiltration levels and common immune checkpoint in KIRC samples. RESULTS: By intersecting 575 KIRC-related module lncRNAs, 1773 differentially expressed lncRNAs, and 62 m7G-related lncRNAs, we identified 42 DE-m7G-lncRNAs. Using XGBoost and Boruta algorithms, 8 biomarkers for KIRC were selected. Kaplan-Meier survival analysis showed significant survival differences in KIRC patients with high and low expression of the PTCSC3 and RP11-321G12.1. Univariate and multivariate Cox regression analyses showed that AP000696.2, PTCSC3 and clinical characteristics were independent prognostic factors for patients with KIRC. A nomogram based on these prognostic factors accurately predicted the prognosis of KIRC patients. The biomarkers showed associations with clinical features of KIRC patients, mainly localized in the cytoplasm and related to cytokine-mediated immune response. Furthermore, immune feature analysis demonstrated a significant decrease in immune cell infiltration levels in KIRC samples compared to normal samples, with a negative correlation observed between the biomarkers and most differentially infiltrating immune cells and common immune checkpoints. CONCLUSION: In summary, this study discovered eight prognostic biomarkers associated with KIRC patients. These biomarkers showed significant correlations with clinical features, immune cell infiltration, and immune checkpoint expression in KIRC patients, laying a theoretical foundation for the diagnosis and treatment of KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , RNA Longo não Codificante , Humanos , Prognóstico , RNA Longo não Codificante/genética , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Biomarcadores , Rim
4.
Anal Chem ; 94(18): 6909-6917, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35481762

RESUMO

It is necessary to explore labeling probes with worthy optical properties and a noninvasive fluorescence imaging manner for stable long-term in situ measuring a single suspension cell. In response to these goals, we herein make a breakthrough on two fronts. On one hand, a co-sensitizer-induced efficient 808 nm near-infrared light-excited luminescence-confined upconversion nanoparticle with a low thermal effect is fabricated by employing a layer-by-layer seed growing approach to develop a sandwich structure, under which the luminescence domain is vastly restricted into an extremely thin inner shell (∼ 2.77 nm) to finally bring about a high-efficiency luminescent resonance energy transfer (LRET) sensing behavior. On the other hand, a self-made optical tweezers integrated upconversion luminescence confocal scanning instrument is applied to enhance the imaging accuracy, after which the liquid viscous force is sufficiently overcome by the resulting single beam gradient force and the analyzed suspension cell is always immobilized to the focal plane to ensure a constant luminescence excitation condition. By making use of a metal ion-dependent DNAzyme and a hairpin DNA strand to design a corresponding LRET sensing system, our nanoprobe shows satisfactory assay performance for two model biomolecules (Ca2+ and TK1 messenger RNA). Following the optical trapping-assisted imaging, this exceptional measurement method is capable of effectively monitoring the intracellular target changes in different physiological states, endowing a powerful toolbox for single cell analysis.


Assuntos
Luminescência , Nanopartículas , Transferência Ressonante de Energia de Fluorescência , Nanopartículas/química , Imagem Óptica , Pinças Ópticas , Suspensões
5.
Anal Chem ; 94(13): 5450-5459, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35324151

RESUMO

In light of the worthy design flexibility and the good signal amplification capacity, the recently developed DNA motor (especially the DNA walker)-based fluorescent biosensors can offer an admirable choice for realizing bioimaging. However, this attractive biosensing strategy not only has the disadvantage of uncontrollable initiation but also usually demands the supplement of exogenous driving forces. To handle the above obstacles, some rewarding solutions are proposed here. First, on the surface of an 808 nm near-infrared light-excited low-heat upconversion nanoparticle, a special ultraviolet upconversion luminescence-initiated three-dimensional (3D) walking behavior is performed by embedding a photocleavage linker into the sensing elements, and such light-controlled target recognition can perfectly overcome the pre-triggering of the biosensor during the biological delivery to significantly boost the sensing precision. After that, a peculiar self-driven walking pattern is constructed by employing MnO2 nanosheets as an additional nanovector to physically absorb the sensing frame, for which the reduction of the widespread glutathione in the biological medium can bring about sufficient self-supplied Mn2+ to guarantee the walking efficiency. By selecting an underlying next-generation broad-spectrum cancer biomarker (survivin messenger RNA) as the model target, we obtain that the newly formed autonomous 3D DNA motor shows a commendable sensitivity (where the limit of detection is down to 0.51 pM) and even an outstanding specificity for distinguishing single-base mismatching. Beyond this sound assay performance, our sensing approach is capable of working as a powerful imaging platform for accurately operating in various living specimens such as cells and bodies, showing a favorable diagnostic ability for cancer care.


Assuntos
Técnicas Biossensoriais , Nanopartículas , DNA/genética , Glutationa , Luminescência , Compostos de Manganês , Óxidos
6.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652632

RESUMO

The use of bioresorbable fracture fixation plates made of aliphatic polyesters have good potential due to good biocompatibility, reduced risk of stress-shielding, and eliminated need for plate removal. However, polyesters are ductile, and their handling properties are limited. We suggested an alternative, PLAMA (PolyLActide functionalized with diMethAcrylate), for the use as the matrix phase for the novel concept of the in situ curable bioresorbable load-bearing composite plate to reduce the limitations of conventional polyesters. The purpose was to obtain a preliminary understanding of the chemical and physical properties and the biological safety of PLAMA from the prospective of the novel concept. Modifications with different molecular masses (PLAMA-500 and PLAMA-1000) were synthesized. The efficiency of curing was assessed by the degree of convergence (DC). The mechanical properties were obtained by tensile test and thermomechanical analysis. The bioresorbability was investigated by immersion in simulated body fluid. The biocompatibility was studied in cell morphology and viability tests. PLAMA-500 showed better DC and mechanical properties, and slower bioresorbability than PLAMA-1000. Both did not prevent proliferation and normal morphological development of cells. We concluded that PLAMA-500 has potential for the use as the matrix material for bioresorbable load-bearing composite fracture fixation plates.


Assuntos
Fixação de Fratura/métodos , Fraturas Ósseas/terapia , Lactose/análogos & derivados , Poliésteres/farmacologia , Ácidos Polimetacrílicos/farmacologia , Implantes Absorvíveis/efeitos adversos , Placas Ósseas/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Humanos , Lactose/química , Lactose/farmacologia , Teste de Materiais , Poliésteres/química , Ácidos Polimetacrílicos/química , Estresse Mecânico , Resistência à Tração , Suporte de Carga
7.
Eur J Oral Sci ; 128(1): 81-88, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31994247

RESUMO

This study investigated the effect of discontinuous cellulose microfibers with various loading fractions on selected physical properties of glass polyalkenoate (glass ionomer) cement (GIC). Fiber-reinforced GIC (Exp-GIC) was prepared by adding discontinuous cellulose microfiber (with an average length of 500 µm) at various mass ratios (1, 2, 3, 4, and 5 mass%) to the powder of conventional GIC (GC Fuji IX) using a high-speed mixing device. Fracture toughness, work of fracture, and compressive strength were determined for each experimental and control material. The specimens (n = 6) were wet stored (37°C for 1 d) before testing. A scanning electron microscope equipped with an energy dispersive spectroscope was used to examine the surface of fibers after treatment with cement liquid. Data were analyzed using ANOVA. The Exp-GIC (5 mass%) specimen had statistically significantly higher fracture toughness (0.9 MPa.m1/2 ) than unreinforced material (0.4 MPa.m1/2 ). On the other hand, Exp-GIC with 1 mass% displayed the highest compressive strength (116 MPa) among all tested groups. The use of discontinuous cellulose microfibers with conventional GIC matrix considerably increased the toughening performance compared with the particulate GICs used.


Assuntos
Cimentos de Ionômeros de Vidro , Celulose , Materiais Dentários , Teste de Materiais
8.
J Prosthet Dent ; 120(4): 609-616, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29724549

RESUMO

STATEMENT OF PROBLEM: The use of composite resin to restore teeth has increased substantially during the last decades. However, secondary caries and the fracture of restorations are the leading reasons for clinical restoration failure. Mechanically strong composite resins with caries-inhibition capabilities are needed. Although antibacterial dimethacrylate quaternary ammonium monomers have been synthesized, composite resin containing dimethacrylate quaternary ammonium monomers and glass fillers has rarely been reported. PURPOSE: The purpose of this in vitro study was to evaluate the possibility of the clinical use of an experimental composite resin containing urethane dimethacrylate quaternary ammonium compound (UDMQA-12) by investigating its antibacterial activity, cytotoxicity, flexural strength, and flexural modulus. MATERIAL AND METHODS: Antibacterial activity against Streptococcus mutans was investigated by means of direct contact test. The antibacterial activity of specimens after water immersion and saliva treatment was also tested. These were compared with a commercially available composite resin, Z250, and a glass ionomer cement, Fuji VII. Effects of the eluent from the experimental composite resin on the metabolic activity of human dental pulp cells were quantified. Disks of 1 mm in thickness and 15 mm in diameter were used in the antibacterial and cytotoxic tests. Flexural strength and flexural modulus were measured with a 3-point bend test with bars of 2×2×25 mm. Three commercially available composite resins (Filtek Z250, G-aenial Anterior, and G-aenial Posterior) were used as controls in the flexural test. RESULTS: Bacterial growth was inhibited on the experimental composite resin. After water immersion or saliva treatment, the experimental composite resin showed significant antibacterial effect compared with the conventional composite resin (P<.05). No significant difference was found in cytotoxicity between the experimental composite resin and the conventional composite resin (P>.05), and a significantly higher cytotoxicity was shown by glass ionomer cement compared with the experimental composite resin and the conventional composite resin (P<.05). The conventional composite resin had the highest flexural strength and flexural modulus (P<.05), followed by the experimental composite resin, then G-ænial Posterior and G-ænial Anterior. CONCLUSIONS: The antibacterial experimental composite resin was biocompatible and had mechanical properties similar to those of some commercially available composite resins. It might, therefore, be useful in preventing the occurrence of secondary caries.


Assuntos
Antibacterianos/farmacologia , Resinas Compostas/farmacologia , Citotoxinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Antibacterianos/química , Resinas Compostas/química , Citotoxinas/química , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Resistência à Flexão , Humanos , Técnicas In Vitro , Metacrilatos/química , Metacrilatos/farmacologia , Testes de Sensibilidade Microbiana , Poliuretanos/química , Poliuretanos/farmacologia , Compostos de Amônio Quaternário/química , Streptococcus mutans/efeitos dos fármacos
9.
Int J Mol Sci ; 17(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916947

RESUMO

With the aim of reducing human exposure to Bisphenol A (BPA) derivatives in dentistry, a fluorinated dimethacrylate monomer was synthesized to replace 2,2-bis[4-(2-hydroxy-3-methacryloy-loxypropyl)-phenyl]propane (Bis-GMA) as the base monomer of dental resin. After mixing with reactive diluent triethyleneglycol dimethacrylate (TEGDMA), fluorinated dimethacrylate (FDMA)/TEGDMA was prepared and compared with Bis-GMA/TEGDMA in physicochemical properties, such as double bond conversion (DC), volumetric shrinkage (VS), water sorption (WS) and solubility (WSL), flexural strength (FS) and modulus (FM). The results showed that, when compared with Bis-GMA based resin, FDMA-based resin had several advantages, such as higher DC, lower VS, lower WS, and higher FS after water immersion. All of these revealed that FDMA had potential to be used as a substitute for Bis-GMA. Of course, many more studies, such as biocompatibility testing, should be undertaken to prove whether FDMA could be applied in clinic.


Assuntos
Materiais Biocompatíveis/química , Materiais Dentários/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Resinas Sintéticas/química , Compostos Benzidrílicos/química , Compostos Benzidrílicos/uso terapêutico , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/uso terapêutico , Resinas Compostas/síntese química , Resinas Compostas/química , Materiais Dentários/síntese química , Materiais Dentários/uso terapêutico , Halogenação , Humanos , Fenóis/química , Fenóis/uso terapêutico , Polietilenoglicóis/síntese química , Ácidos Polimetacrílicos/síntese química , Resinas Sintéticas/síntese química , Resinas Sintéticas/uso terapêutico , Solubilidade , Água/química
10.
Int J Health Care Qual Assur ; 28(4): 394-411, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25982639

RESUMO

PURPOSE: Clinical pathways (CPs) are multidisciplinary care plans with essential care steps for patients with specific clinical problems. CPs were introduced in China in 2009 to assure quality, reduce risks, increase resource efficiency and control costs. The purpose of this paper is to present a Chinese public hospital case study where a CP pilot was undertaken to evaluate two main outcomes: length of stay and hospitalization costs for a tertiary hospital from 2010 to 2012 using a mixed-methods approach. DESIGN/METHODOLOGY/APPROACH: Data were drawn from hospital records and in-depth interviews with hospital staff in a Shanxi Province tertiary hospital, northern China. FINDINGS: The authors found that the main objectives: to standardize treatment procedures by reducing length of stay and containing costs, were not fully achieved. Staff implementing CPs clearly encountered several barriers; i.e., managers did not see the pilot as a useful managerial instrument but were still driven by revenue generation. Physicians, too, lacked incentive to follow the guidelines due to income concerns. PRACTICAL IMPLICATIONS: The authors point to the daunting challenges brought about by perverse incentives embedded in the country's health system. The authors argue that concerted efforts are needed to undertake difficult health policy reforms in China. ORIGINALITY/VALUE: The authors present the first empirical study in the English-language literature that examines China's ongoing CP pilots from a micro perspective. The authors combine qualitative and quantitative methods and reveal the hospital-level dynamics in its implementation.


Assuntos
Procedimentos Clínicos , Política de Saúde , China , Controle de Custos , Reforma dos Serviços de Saúde , Pesquisa sobre Serviços de Saúde , Humanos , Entrevistas como Assunto , Tempo de Internação/estatística & dados numéricos , Corpo Clínico Hospitalar , Projetos Piloto , Indicadores de Qualidade em Assistência à Saúde
11.
J Mater Sci Mater Med ; 25(5): 1387-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24449028

RESUMO

Four novel quaternary ammonium dimethacrylate monomers named IMQ (side alkyl chain length from 12 to 18) were synthesized with the aim to synthesize dental resin with antibacterial activity. All of IMQs were added into bis-GMA/TEGDMA dental resin system with a series of mass ratio (5, 10, and 20 wt%), double bond conversion (DC), flexural strength (FS), modulus of elasticity (FM) and biofilm formation inhibitory effect were studied. According to the results of DC, FS, FM, and the biofilm inhibitory effect, IMQ-16 containing polymer had the best comprehensive properties, and the optimal concentration of IMQ-16 in bis-GMA/TEGDMA dental resin would be in the range of 5-10 wt%.


Assuntos
Bis-Fenol A-Glicidil Metacrilato/química , Implantes de Medicamento/administração & dosagem , Metacrilatos/síntese química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Compostos de Amônio Quaternário/administração & dosagem , Streptococcus mutans/fisiologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Força Compressiva , Implantes de Medicamento/química , Módulo de Elasticidade , Dureza , Teste de Materiais , Metacrilatos/administração & dosagem , Compostos de Amônio Quaternário/síntese química , Streptococcus mutans/efeitos dos fármacos
12.
Dent Mater ; 40(9): 1378-1389, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38902144

RESUMO

OBJECTIVES: The purpose of this study was evaluating the performance of new Bis-EFMA based bulk-fill composites with common methacrylate based composites and commercial dental composites. METHODS: The Bis-EFMA monomer was synthesized and the novel Bis-EFMA based bulk-fill composites were prepared. The resin composite samples were co-cultured with human gingival epithelial cells and human dental pulp stem cells to test the biocompatibility. The edge adaptation was observed under a combination of stereoscope and scanning electron microscope. The internal hardness was measured using a Vickers microhardness tester after one-time filling of cavities prepared in extracted teeth. After friction and wear test on the surface of the resin composites, the surface morphology and volume wear of each group were measured by the optical profilometer. The color stability was measured by a colorimeter. RESULTS: Direct contact with human gingival epithelial cells and human dental pulp stem cells did not cause significant changes in their growth density and morphology, indicating good biocompatibility of Bis-EFMA group (p > 0.05). The continuous margin proportion of the Bis-EFMA group was as good as commercial bulk-fill composites (p > 0.05). The sectional microhardness results showed that the Bis-EFMA group had the highest microhardness. After the friction and wear test, the volume wear of the Bis-EFMA group was minimal, indicating its good wear resistance and mechanical strength. Color changes in all resin groups after 28 days of immersion were within the clinically acceptable range. SIGNIFICANCE: The addition of Bis-EFMA demonstrated excellent biocompatibility, edge adaptation and color stability comparable to commonly used clinical bulk-fill composites, along with preferable mechanical strength, friction and wear resistance. Bis-EFMA based bulk-fill composites have the potential to be employed as a bulk filling material in commercial dental composite applications.


Assuntos
Resinas Compostas , Teste de Materiais , Propriedades de Superfície , Resinas Compostas/química , Humanos , Dureza , Polpa Dentária/citologia , Microscopia Eletrônica de Varredura , Gengiva/citologia , Metacrilatos/química , Células-Tronco/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Materiais Biocompatíveis/química , Cor , Adaptação Marginal Dentária
13.
Polymers (Basel) ; 16(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38932063

RESUMO

This study aimed to evaluate the flexural strength (FS), surface wear, and optical properties of 3D-printed dental resins subjected to different post-printing conditions. A total of 240 specimens (2 × 2 × 25 mm³) were 3D-printed using resin materials for permanent (VaresoSmile Crown Plus) VSC and temporary (VaresoSmile Temp) VST restorations. Specimens underwent five post-printing conditions: no post-printing cure; post-cured in a Form Cure curing unit; Visio Beta Vacuum; Ivoclar Targis; or heat-cured (150 °C) for 30 min. Each group of specimens (n = 24) was tested either directly after post-curing, after 24 h of dry storage, or following hydrothermal accelerated aging in boiling water for 16 h. The three-point bending test was used to evaluate the FS. The two-body wear test was performed on 50 disc-shaped specimens (n = 5/group). Surface gloss and translucency were measured for permanent VSC specimens (n = 5/group). SEM/EDS and statistical analyses were performed. The Form Cure device yielded the highest FS and lowest wear depth (p < 0.05). Hydrothermal aging significantly reduced FS. There were no statistical differences in FS and wear values between materials subjected to same post-printing conditions. VSC groups exhibited similar optical properties across different post-printing treatments. Post-printing treatment conditions had a significant impact on the FS and wear of the 3D-printed resin, while optical properties remained unaffected.

14.
Dent Mater ; 40(8): e31-e39, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38926013

RESUMO

OBJECTIVE: The commonly used base monomer utilized in resinous commercial dental restorative products is bis-GMA which is derived from bisphenol-A (BPA) - a well-known compound which may disrupt endocrine functions. To address concerns about its leaching into the oral environment and to optimize the quality of dental composites, a BPA-free alternative base monomer, fluorinated urethane dimethacrylate (FUDMA), was designed by modifying a UDMA monomer system. METHODS: Nine groups of composites were prepared by mixing the base monomers and TEGDMA in a ratio of 70/30 wt% to which were added silanized glass particles (mean diameter: 0.7 µm) in 3 different volume fractions (40, 45, and 50 vol%). Bis-GMA and UDMA base monomers were used as control groups in the same ratios. Various properties including degree of conversion (DC), flexural strength (FS) and flexural modulus (FM), water sorption (WS), solubility (SL), surface hardness and roughness, and initial adhesion property against S.mutans were investigated. One-way analysis of variance followed by Bonferroni test at α = 0.05 was used to analyze the results. RESULTS: A significant difference in FS between FUDMA-based composite with 40 vol% filler (120.3 ± 10.4 MPa) and Bis-GMA-based composite with the same filler fraction (105.8 ± 10.0 MPa) was observed but there was no significant difference among other groups. The UDMA based group exhibited the highest WS (1.3 ± 0.3 %). Bis-GMA showed greater initial bacterial adhesion but was not statistically different from the other groups (p = 0.082). SIGNIFICANCE: FUDMA-based resin composites exhibit comparable mechanical and bacterial adhesion properties compared with Bis-GMA and UDMA-based composites. The FUDMA composites show positive outcomes indicating they could be used as substitute composites to Bis-GMA-based composites.


Assuntos
Antibacterianos , Compostos Benzidrílicos , Resinas Compostas , Resistência à Flexão , Teste de Materiais , Metacrilatos , Fenóis , Poliuretanos , Propriedades de Superfície , Resinas Compostas/química , Poliuretanos/química , Compostos Benzidrílicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Metacrilatos/química , Fenóis/química , Fenóis/farmacologia , Dureza , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Solubilidade , Streptococcus mutans/efeitos dos fármacos , Bis-Fenol A-Glicidil Metacrilato/química , Módulo de Elasticidade
15.
Materials (Basel) ; 17(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255513

RESUMO

Resin-based dental materials have been one of the ideal choices among various materials in the treatment of dental caries. However, resin-based dental materials still have some drawbacks, such as the lack of inherent antibacterial activity. Extensive research has been conducted on the use of novel quaternary ammonium monomers (QAMs) to impart antibacterial activity to dental materials. This review provides a comprehensive overview of the recent advances in quaternary ammonium monomers (QAMs) for dental applications. The current progress and limitations of QAMs are discussed based on the evolution of their structures. The functional diversification and enhancement of QAMs are presented. QAMs have the potential to provide long-term antibacterial activity in dental resin composites, thereby prolonging their service life. However, there is a need to balance antibacterial performance with other material properties and the potential impact on the oral microbiome and general health. Finally, the necessity for further scientific progress in the development of novel quaternary ammonium monomers and the optimization of dental resin formulations is emphasized.

16.
J Mater Chem B ; 12(3): 814-827, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38189164

RESUMO

Polymerisation shrinkage and biofilm accumulation are the two main problems associated with dental resin composites (DRCs) that induce secondary caries, which can cause restoration failure. Polymerisation shrinkage can lead to microleakage gaps between the tooth and the DRCs, causing the aggregation of bacteria and development of secondary caries. Reducing the shrinkage stress (SS) and improving the resistance to bacterial adhesion have always been the focus of this field in modifying DRCs. A thiol-ene resin system can effectively reduce the polymerisation SS via its step-growth mechanism for delaying the gel point. Fluorinated compounds can reduce the surface free energies, thereby reducing bacterial adhesion. Thus, in this study, a range of mass fractions (0, 10, 20, 30, and 40 wt%) of a fluorinated thiol-ene resin system were added to a fluorinated dimethacrylate resin system/tricyclo decanedimethanol diacrylate to create a fluorinated methacrylate-thiol-ene ternary resin matrix. DRCs were prepared using the obtained ternary resin matrix, and their physical and chemical properties, effect on bacterial adhesion, and biocompatibility were investigated. The results demonstrated that the volumetric shrinkage and SS of the DRCs were reduced with no reduction in conversion degree even after the thiol-ene resin system was added. All DRC-based fluorinated resin systems exhibited an excellent anti-bacterial adhesion effect, as evidenced by the colony-forming unit counts, live/dead bacterial staining, and crystal violet staining tests against Streptococcus mutans (S. mutans). The genetic expressions associated with the bacterial adhesion of S. mutans were substantially affected after being cultured with fluorinated DRCs. All fluorinated DRCs demonstrated good biocompatibility through the in vitro cytotoxicity test and live/dead staining images of the L-929 cells. The above results illustrate that the DRCs based on the fluorinated methacrylate-thiol-ene resin matrix can be potentially applied in clinical practice due to their low SS and anti-bacterial adhesion effect.


Assuntos
Resinas Compostas , Metacrilatos , Resinas Compostas/farmacologia , Teste de Materiais , Metacrilatos/farmacologia , Metacrilatos/química , Compostos de Sulfidrila/química , Bactérias
17.
J Mater Sci Mater Med ; 24(6): 1595-603, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23456599

RESUMO

A novel tertiary amine containing urethane dimethacrylate monomer UDMTA was synthesized with the aim of replacing Bis-GMA as one component of dental restorative materials. The structure of UDMTA was confirmed by FT-IR and (1)H-NMR spectra. UDMTA was incorporated into Bis-GMA/TEGDMA (50 wt%/50 wt%) resin system to replace Bis-GMA partly and totally. Double bond conversion, polymerization volumetric shrinkage, water sorption and solubility, flexural strength and modulus of UDMTA containing resin formulations were studied with neat Bis-GMA/TEGDMA resin formulation as a reference. Results showed that UDMTA could be used as a coinitiator in photocurable dental resin, UDMTA containing resin had higher double bond conversion and lower polymerization shrinkage than that of Bis-GMA/TEGDMA resin, and the UDMTA containing copolymer had higher flexural strength and flexural modulus than Bis-GMA/TEGDMA copolymer. When UDMTA was used to replace more than 25 wt% of Bis-GMA, the obtained copolymer had higher water sorption and solubility. The optimized resin composition is by replacing 25 wt% of Bis-GMA in Bis-GMA/TEGDMA (50/50 by wt%), for the prepared resin had the best comprehensive properties.


Assuntos
Aminas/química , Metacrilatos/química , Poliuretanos/química , Resinas Sintéticas/síntese química , Módulo de Elasticidade , Dureza , Teste de Materiais , Resistência à Tração
18.
Int J Mol Sci ; 14(3): 5445-60, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23470923

RESUMO

In order to prepare antibacterial and radio-opaque dental resin, a methacrylate monomer named 2-Dimethyl-2-dodecyl-1-methacryloxyethyl ammonium iodine (DDMAI) with both antibacterial and radio-opaque activities was added into a 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropyl)-phenyl]propane (Bis-GMA)/methyl methacrylate (MMA) dental resin system. Degree of conversion (DC), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (WSL), antibacterial activity, and radio-opacity (ROX) of the obtained dental resin system were investigated. Bis-GMA/MMA resin system without DDMAI was used as a control. The results showed that DDMAI could endow BIS-GMA/MMA resin system with good antibacterial (p < 0.05) and radio-opaque function without influencing the DC (p > 0.05). However, incorporating DDMAI into Bis-GMA/MMA resin could reduce mechanical properties (p < 0.05) and increase WS and WSL (p < 0.05), thus further work is needed in order to optimize the resin formulation.

19.
Biomater Investig Dent ; 10(1): 2281090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38979097

RESUMO

With the purpose of further reducing surface free energy to achieve better anti-bacterial adhesion effect of fluorinated dimethacrylate (FDMA)/tricyclo (5.2.1.0) decanedimethanol diacrylate (SR833s) based dental resin composites (DS), 1H,1H-heptafluorobutyl methacrylate (FBMA) was used to partially replace SR933s as reactive diluent. According to the degree of substitution, the obtained resin composites were marked as DSF-1 (20 wt.% of SR833s was replaced by FBMA), DSF-2 (40 wt.% of SR833s was replaced by FBMA), and DSF-3 (60 wt.% of SR833s was replaced by FBMA). Bisphenol A glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) based resin composite (BT) was used as control. The influence of FBMA concentration on double bond conversion (DC), contact angle, surface free energy, anti-bacterial adhesion effect against Streptococcus mutans (S. mutans), volumetric shrinkage (VS) and shrinkage stress (SS), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (SL) were investigated. The results showed that FBMA addition could reduce surface free energy from 44.6 mN/m for DS to 32.9 mN/m for DSF-3, and lead to better anti-bacterial adhesion effect (the amounts of adherent bacteria decreased from 2.03 × 105 CFU/mm2 for DS to 6.44 × 104 CFU/mm2 for DSF-3). The FBMA had no negative effects on DC, VS, SS, WS, and SL. Too high a concentration of FBMA reduced FS and FM before water immersion, but the values were still higher than those of BT.

20.
Biomater Investig Dent ; 10(1): 2191621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090482

RESUMO

Dental resin composites (DRCs) have become the first choice among different restorative materials for direct anterior and posterior restorations in the clinic. Though the properties of DRCs have been improved greatly in recent years, they still have several shortcomings, such as volumetric shrinkage and shrinkage stress, biofilm development, lack of radio-opacity for some specific DRCs, and estrogenicity, which need to be overcome. The resin matrix, composed of different monomers, constitutes the continuous phase and determine the performance of DRCs. Thus, the chemical structure of the monomers plays an important role in modifying the properties of DRCs. Numerous researchers have taken to design and develop novel monomers with specific functions for the purpose of fulfilling the needs in dentistry. In this review, the development of monomers in DRCs were highlighted, especially focusing on strategies aimed at reducing volumetric shrinkage and shrinkage stress, endowing bacteriocidal and antibacterial adhesion activities as well as protein-repelling activity, increasing radio-opacity, and replacing Bis-GMA. The influences of these novel monomers on the properties of DRCs were also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA