Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215633

RESUMO

BARENTSZ (BTZ), a core component of the exon junction complex, regulates diverse developmental processes in animals. However, its evolutionary and developmental roles in plants remain elusive. Here, we revealed that three groups of paralogous BTZ genes existed in Poaceae, and Group 2 underwent loss-of-function mutations during evolution. They showed surprisingly low (~33%) sequence identities, implying functional divergence. Two genes retained in rice, OsBTZ1 and OsBTZ3, were edited; however, the resultant osbtz1 and osbtz3 mutants showed similar floral morphological and functional defects at a low frequency. When growing under low-temperature conditions, developmental abnormalities became pronounced, and new floral variations were induced. In particular, stamen and carpel functionality was impaired in these rice btz mutants. The double-gene mutant osbtz1/3 shared these floral defects with an increased frequency, which was further induced under low-temperature conditions. OsBTZs interacted with OsMADS7 and OsMADS8, and the floral expressions of the OsTGA10 and MADS-box genes were correlatively altered in these osbtz mutants and responded to low-temperature treatment. These novel findings demonstrate that two highly diverged OsBTZs are required to maintain floral developmental stability under low-temperature conditions, and play an integral role in male and female fertility, thus providing new insights into the indispensable roles of BTZ genes in plant development and adaptive evolution.

2.
Materials (Basel) ; 15(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35160932

RESUMO

The combustion characteristics and kinetics of high- and low-reactivity metallurgical cokes in an air atmosphere were studied by thermogravimetric instrument. The Coats-Redfern, FWO, and Vyazovkin integral methods were used to analyze the kinetics of the cokes, and the kinetic parameters of high- and low-reactivity metallurgical cokes were compared. The results show that the heating rate affected the comprehensive combustion index and combustion reaction temperature range of the cokes. The ignition temperature, burnout temperature, combustion characteristics, and maximum weight-loss rate of low-reactivity coke (L-Coke) were better than high-reactivity coke (H-Coke). Low-reactivity coke had better thermal stability and combustion characteristics. At the same time, it was calculated via three kinetic analysis methods that the combustion activation energy gradually decreased with the progress of the reaction. The coke combustion activation energy calculated by the Coats-Redfern method was larger than the coke combustion activation energy calculated by the FWO and Vyazovkin methods, but the laws were consistent. The activation energy of L-Coke was about 4~8 kJ/mol more than that of H-Coke.

3.
ACS Appl Mater Interfaces ; 13(27): 31527-31541, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181398

RESUMO

It is significant to use functional biomaterials to rationally engineer microenvironments for in situ bone regeneration in the field of bone tissue engineering. To this end, we constructed the gypsum-coated ß-tricalcium phosphate (G-TCP) scaffolds by combing a three-dimensional printing technique and an epitaxial gypsum growth method. In vitro simulation experiments showed that the as-prepared scaffolds could establish a dynamic and weakly acidic microenvironment in a simulated body liquid, in which the pH and the calcium ion concentration always changed due to the gypsum degradation and growth of bone-like apatite nanoplates on the scaffold surfaces. The cell experiments confirmed that the microenvironment established by the G-TCP surfaces promoted rapid osteogenic differentiation and proliferation of bone marrow mesenchymal stem cells (BM-MSCs). In vivo experiments confirmed that the G-TCP scaffolds had high bioactivity in modulating in situ regeneration of bone, and the bioactivity of the G-TCP scaffolds was endowed by correct pore structures, degradation of gypsum, and growth of a bone-like apatite layer. The microenvironment established by the gypsum degradation could stimulate tissue inflammation and recruit white blood cells and BM-MSCs and thus accelerating native healing cascades of the bone defects via a bone growth/remodeling-absorption cycle process. Furthermore, in vivo experiments demonstrated that after the bone defects had healed completely, the as-prepared scaffolds also degraded completely within 24 weeks.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Sulfato de Cálcio/química , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Coelhos
4.
ACS Appl Bio Mater ; 4(8): 6280-6293, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006920

RESUMO

Due to low success rates of antibiotic therapy in most osteomyelitis diseases, continuous efforts have been made to fabricate local delivery systems with high antimicrobial effects. Here, we reported a kind of ε-polylysine(PL)/Ag-loaded porous tricalcium phosphate (TCP) bead instead of antibiotics as local delivery systems for the treatment of Staphylococcus aureus-caused osteomyelitis. Such local delivery systems were prepared by the fabrication of porous TCP beads at first and then the loading of Ag and PL in turn into porous TCP beads via in situ Ag-doping and layer-by-layer methods. In vitro experiments demonstrated that the release of PL and Ag was controllable. Especially, the release dosage of Ag could be controlled to be less than 0.05 ppm 28 days later. The surface coating of PL improved the cytocompatibility and antibacterial activity of local delivery systems. In vivo experiments demonstrated that the Ag/PL-loaded porous TCP beads displayed strong antibacterial activity and good osteoconductivity, and the combination of Ag and PL was better than the use of single antibacterial materials to treat S. aureus-caused osteomyelitis. The implantation of Ag into the infected marrow had low toxicity because Ag has been integrated into the TCP grains, which could be absorbed in marrow. Therefore, the Ag/PL-loaded porous TCP beads presented potential for treating osteomyelitis, especially sequestrum-debrided osteomyelitis.


Assuntos
Osteomielite , Staphylococcus aureus , Antibacterianos/farmacologia , Fosfatos de Cálcio , Humanos , Osteomielite/tratamento farmacológico , Porosidade
5.
Waste Manag ; 120: 626-634, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33176939

RESUMO

The recycling of high-titanium-bearing blast furnace slag (TiO2 > 23 wt.%) is an urgent problem that has attracted global research attention. To achieve high-efficiency, low-consumption, clean, and high value-added recycling utilization, a new process is proposed herein, which entails reacting a CH4-H2-N2 gas mixture with the titanium-bearing blast furnace slag to initially produce Ti(C, N, O) at a low temperature, whereafter the product is purified and chlorinated. The effects of Fe2O3, urea, and sawdust on the reduction and carbonitriding characteristics are also investigated. The results indicate that the Fe2O3 additive can promote the formation of Ti(C, N, O), while urea and sawdust are instrumental for enhancing gas diffusion in solid powders. The proposed novel recycling process was assessed and it evinced many advantages and great feasibility.


Assuntos
Reciclagem , Titânio , Gases
6.
Materials (Basel) ; 14(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34442955

RESUMO

Vanadium-titanium magnetite (VTM) is an important raw material for ironmaking under the situation of increasingly demanding scarce resources. To further improve the metallurgical properties of pellets, and to satisfy the requirements of blast furnace slag basicity, finely ground dolomite and limestone have been added to the pellet. In this study, the effect of finely ground dolomite and limestone on the metallurgical properties (green pellet drop strength, cold compression strength, reduction swelling index, and microscopic mineral structure) of VTM pellets were investigated. With the addition of finely ground dolomite and limestone, the drop strength of the green pellet was improved. The effect of adding finely ground limestone was greater than adding finely ground dolomite. Adding more finely ground dolomite and limestone compared to pellets without limestone and dolomite, the cold compression strength was decreased, which was attributed to the decomposition of limestone and dolomite during the induration of pellets. With the addition of dolomite, the reduction swelling index (RSI) increased firstly and then decreased. When the basicity of the pellet was 0.54 to 0.94, the slag phase with the lowest melting point was formed, corresponding to the maximum of the reduction swelling index. For the pellets with added limestone, the reduction swelling of the pellets deteriorated. The reduction index of the pellets increased and reached the maximum (26.6%) at a basicity of 1.54, which belongs to abnormal swelling.

7.
Dalton Trans ; 50(8): 2928-2935, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33650596

RESUMO

Metal-organic frameworks (MOFs) have recently emerged as promising solid electrolytes (SEs) for solid-state batteries (SSBs). Developing MOFs with high-density functional groups may improve the spatial density of hopping sites and facilitate ion transport. Herein we synthesized a new series of ion conductive MOFs, Zr-MA-M (M = Li+, Na+, K+, Zn2+), with high density -SH groups functionalized in small pores and metal ions adsorbed on the thiol groups. Taking advantage of the interaction between S and metal ions, such ion conductors show high ionic conductivity, low interfacial resistance, high lithium ion (Li+) transference number (0.63) and wide electrochemical window up (4.6 V). Moreover, the SSBs assembled with Zr-MA-Li+ based SE exhibit excellent rate performance (106 mA h g-1 at 2C) and remarkable cyclic stability (low decay rate of 0.21‰ per cycle for 700 cycles at 2C). Thus, this study provides a new route for developing high-performance MOF-based SEs via the application of host-guest interaction.

8.
ACS Nano ; 15(11): 18363-18373, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34694767

RESUMO

Lithium-sulfur batteries (LSBs) are still severely blocked by the shuttle of polysulfides (LiPSs), resulting in low sulfur utilization and decreased lifetime. The optimal design of hosts with tailored porous structures and catalytic sites is expected to address this issue. Herein, a Bi/Bi2O3 heterostructure within the metal-organic framework (MOF)-derived sulfur host with a hierarchical structure was elaborated for both serving as sulfur hosts and promoting the redox reaction kinetics of LiPSs. The shuttle effects of LiPSs can be mitigated by the dual functional Bi/Bi2O3 heterostructure enriched in the outer layer of CAU-17-derived carbonic rods, i.e., the effective redox conversion of LiPSs can be realized at the Bi/Bi2O3 heterointerface by the adsorption of LiPSs over Bi2O3 and subsequently catalytic conversion over Bi. Benefiting from these merits, the fabricated LSBs realized a significantly optimized performance, including a high discharge capacity of 740.8 mAh g-1 after 1000 cycles with an ultralow decay rate of 0.022% per cycle at 1 C, a high areal capacity of 6.6 mAh cm-2 after 100 cycles with a sulfur loading of 8.1 mg cm-2, and good performance in pouch cells as well.

9.
J Colloid Interface Sci ; 427: 42-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24433722

RESUMO

Mesoporous silica with three-dimensional (3D) bicontinuous cubic Ia-3d structure and fascinating caterpillar-like morphology was synthesized by using anionic surfactant N-lauroylsarcosine sodium (Sar-Na) as the template and 3-amionpropyltrimethoxysilane (APS) as the co-structure-directing agent (CSDA) with the aid of acetate. A phase transformation from high interfacial curvature 2D hexagonal to low interfacial curvature 3D cubic Ia-3d occurred in the presence of a proper amount of acetate. Other species of salts (excluding acetate) had the ability to induce the caterpillar-like morphology, but failed to induce the cubic Ia-3d mesostructure. Furthermore, [3-(2-aminoethyl)-aminopropyl]trimethoxysilane (DAPS) was also used as the CSDA to synthesize Ia-3d mesostructured silica under the aid of sodium acetate. After extraction of the anionic surfactants, amino and di-amine functionalized 3D bicontinuous cubic Ia-3d mesoporous silicas were obtained and used as supports to immobilize Pd nanoparticles for supported catalysts. The catalytic activity of the catalysts was tested by catalytic hydrogenation of allyl alcohol.


Assuntos
Sarcosina/análogos & derivados , Dióxido de Silício/síntese química , Acetato de Sódio/química , Aminação , Ânions/química , Porosidade , Sarcosina/química , Dióxido de Silício/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA