Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 211(3): 462-473, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326485

RESUMO

Cell spreading is an initial and critical step in neutrophil adhesion and migration, leading to neutrophil recruitment to inflammatory tissues. Sideroflexin (Sfxn) family proteins are metabolite transporters located in the mitochondrial membrane. Recombinant SFXN5 protein is a citrate transporter in vitro; however, whether Sfxn5 regulates any cellular behavior or function remains unknown. In this study, we found that small interfering RNA transfection or morpholino injection achieving Sfxn5 deficiency in neutrophils significantly decreased neutrophil recruitment in mice and zebrafish, respectively. Sfxn5 deficiency impaired neutrophil spreading and spreading-associated cellular phenotypes, such as cell adhesion, chemotaxis, and ROS production. Actin polymerization is critical for neutrophil spreading, and we found that actin polymerization in spreading neutrophils was partially inhibited by Sfxn5 deficiency. Mechanistically, we observed that the levels of cytosolic citrate and its downstream metabolic products, acetyl-CoA and cholesterol, were decreased in Sfxn5-deficient neutrophils. The levels of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a mediator for the regulation of actin polymerization by cholesterol, were reduced in the plasma membrane of Sfxn5-deficient neutrophils. Exogenous supplementation with citrate or cholesterol partially reversed the reduction in PI(4,5)P2 levels, defective neutrophil actin polymerization, and cell spreading. Altogether, we demonstrated that Sfxn5 maintains cytosolic citrate levels and ensures the synthesis of sufficient cholesterol to promote actin polymerization in a PI(4,5)P2-dependent manner during neutrophil spreading, which is essential for the eventual inflammatory recruitment of neutrophils. Our study revealed the importance of Sfxn5 in neutrophil spreading and migration, thus identifying, to our knowledge, for the first time, the physiological cellular functions of the Sfxn5 gene.


Assuntos
Actinas , Neutrófilos , Animais , Camundongos , Actinas/metabolismo , Neutrófilos/metabolismo , Ácido Cítrico/metabolismo , Peixe-Zebra/metabolismo , Polimerização , Colesterol/metabolismo
2.
Plant Cell Rep ; 41(8): 1693-1706, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35789423

RESUMO

KEY MESSAGE: Seventeen classical MaAGPs and 9 MbAGPs were identified and analyzed. MaAGP1/2/6/9/16/17, the antigens of JIM13 and LM2 antibodies are likely to be involved in banana chilling tolerance. Classical arabinogalactan proteins (AGPs) belong to glycosylphosphatidylinositol-anchored proteins, which are proved to be involved in signaling and cell wall metabolism upon stresses. However, rare information is available on the roles of classical AGPs in low temperature (LT) tolerance. Cultivation of banana in tropical and subtropical region is seriously threatened by LT stress. In the present study, 17 classical MaAGPs and nine MbAGPs in banana A and B genome were identified and characterized, respectively. Great diversity was present among different classical MaAGP/MbAGP members while five members (AGP3/6/11/13/14) showed 100% identity between these two gene families. We further investigated different responses of classical AGPs to LT between a chilling sensitive (CS) and tolerant (CT) banana cultivars. In addition, different changes in the temporal and spatial distribution of cell wall AGP components under LTs between these two cultivars were compared using immunofluorescence labeling. Seven classical MbAGPs were upregulated by LT(s) in the CT cultivar. Classical MaAGP4/6 was induced by LT(s) in both cultivars while MaAGP1/2/9/16/17 only in the CT cultivar. Moreover, these genes showed significantly higher transcription abundance in the CT cultivar than the CS one under LT(s) except classical MaAGP4. Similar results were observed with the epitopes of JIM13 and LM2 antibodies. The antigens of these antibodies and classical MaAGP1/2/6/9/16/17 might be related to LT tolerance of banana. These results provide additional information about plant classical AGPs and their involvement in LT tolerance, as well as their potential as candidate genes to be targeted when breeding CT banana.


Assuntos
Musa , Parede Celular/genética , Parede Celular/metabolismo , Temperatura Baixa , Musa/genética , Musa/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
3.
Prostate ; 81(16): 1320-1328, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34590739

RESUMO

OBJECTIVE: Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men which is associated with profound metabolic changes. Systematic analysis of the metabolic alterations and identification of new biomarkers may benefit PCa diagnosis and a deep understanding of the pathological mechanism. The purpose of this study was to determine the metabolic features of PCa. METHODS: Plasma and urine metabolites from 89 prostate cancer (PCa) patients, 84 benign prostatic hyperplasia (BPH) patients, and 70 healthy males were analyzed using LC-MS/MS and GC-MS. The Orthogonalised Partial Least Squares Discriminant Analysis (OPLS-DA) was used to find the significantly changed metabolites. The clinical value of the candidate markers was examined by receiver operating characteristic curve analysis and compared with prostate-specific antigen (PSA). RESULTS: Multivariate statistical analyses found a series of altered metabolites, which related to the urea cycle, tricarboxylic acid cycle (TCA), fatty acid metabolism, and the glycine cleavage system. Plasma Glu/Gln showed the highest predictive value (AUC = 0.984) when differentiating PCa patients from healthy controls, with a higher sensitivity than PSA (96.6% vs. 94.4%). Both Glu/Gln and PSA displayed a low specificity when differentiating PCa patients from BPH patients (<53.2%), while the combination of Glu/Gln and PSA can further increase the diagnostic specificity to 66.9%. CONCLUSIONS: The present study showed the metabolic features of PCa, provided strong evidence that the amide nitrogen and the energy metabolic pathways could be a valuable source of markers for PCa. Several candidate markers identified in this study were clinically valuable for further assessment.


Assuntos
Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nitrogênio/metabolismo , Próstata , Hiperplasia Prostática , Neoplasias da Próstata , Idoso , Metabolismo Energético , Humanos , Masculino , Redes e Vias Metabólicas , Metabolômica/métodos , Tamanho do Órgão , Próstata/diagnóstico por imagem , Próstata/metabolismo , Próstata/patologia , Antígeno Prostático Específico/análise , Hiperplasia Prostática/sangue , Hiperplasia Prostática/patologia , Hiperplasia Prostática/urina , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Neoplasias da Próstata/urina , Reprodutibilidade dos Testes
4.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008668

RESUMO

Though numerous studies have focused on the cell wall disassembly of bananas during the ripening process, the modification of homogalacturonan (HG) during fruit development remains exclusive. To better understand the role of HGs in controlling banana fruit growth and ripening, RNA-Seq, qPCR, immunofluorescence labeling, and biochemical methods were employed to reveal their dynamic changes in banana peels during these processes. Most HG-modifying genes in banana peels showed a decline in expression during fruit development. Four polygalacturonase and three pectin acetylesterases showing higher expression levels at later developmental stages than earlier ones might be related to fruit expansion. Six out of the 10 top genes in the Core Enrichment Gene Set were HG degradation genes, and all were upregulated after softening, paralleled to the significant increase in HG degradation enzyme activities, decline in peel firmness, and the epitope levels of 2F4, CCRC-M38, JIM7, and LM18 antibodies. Most differentially expressed alpha-1,4-galacturonosyltransferases were upregulated by ethylene treatment, suggesting active HG biosynthesis during the fruit softening process. The epitope level of the CCRC-M38 antibody was positively correlated to the firmness of banana peel during fruit development and ripening. These results have provided new insights into the role of cell wall HGs in fruit development and ripening.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Musa/crescimento & desenvolvimento , Musa/metabolismo , Pectinas/metabolismo , Anticorpos/metabolismo , Epitopos/metabolismo , Frutas/anatomia & histologia , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Musa/anatomia & histologia , Musa/genética , Fatores de Tempo
5.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297477

RESUMO

Banana is one of the most important food and fruit crops in the world and its growth is ceasing at 10-17 °C. However, the mechanisms determining the tolerance of banana to mild (>15 °C) and moderate chilling (10-15 °C) are elusive. Furthermore, the biochemical controls over the photosynthesis in tropical plant species at low temperatures above 10 °C is not well understood. The purpose of this research was to reveal the response of chilling-sensitive banana to mild (16 °C) and moderate chilling stress (10 °C) at the molecular (transcripts, proteins) and physiological levels. The results showed different transcriptome responses between mild and moderate chilling stresses, especially in pathways of plant hormone signal transduction, ABC transporters, ubiquinone, and other terpenoid-quinone biosynthesis. Interestingly, functions related to carbon fixation were assigned preferentially to upregulated genes/proteins, while photosynthesis and photosynthesis-antenna proteins were downregulated at 10 °C, as revealed by both digital gene expression and proteomic analysis. These results were confirmed by qPCR and immunofluorescence labeling methods. Conclusion: Banana responded to the mild chilling stress dramatically at the molecular level. To compensate for the decreased photosynthesis efficiency caused by mild and moderate chilling stresses, banana accelerated its carbon fixation, mainly through upregulation of phosphoenolpyruvate carboxylases.


Assuntos
Resposta ao Choque Frio , Musa/genética , Fotossíntese , Transcriptoma , Regulação da Expressão Gênica de Plantas , Musa/metabolismo , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação para Cima
6.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728477

RESUMO

Tissue injury-induced neutrophil recruitment is a prerequisite for the initiation and amplification of inflammatory responses. Although multiple proteases and enzymes involved in post-translational modification (PTM) of proteins regulate leukocyte recruitment, an unbiased functional screen of enzymes regulating inflammatory leukocyte recruitment has yet to be undertaken. Here, using a zebrafish tail fin amputation (TFA) model to screen a chemical library consisting of 295 compounds that target proteases and PTM enzymes, we identified multiple histone deacetylase (HDAC) inhibitors that modulate inflammatory neutrophil recruitment. AR-42, a pan-HDAC inhibitor, was shown to inhibit neutrophil recruitment in three different zebrafish sterile tissue injury models: a TFA model, a copper-induced neuromast damage and mechanical otic vesicle injury (MOVI) model, and a sterile murine peritonitis model. RNA sequencing analysis of AR-42-treated fish embryos revealed downregulation of neutrophil-associated cytokines/chemokines, and exogenous supplementation with recombinant human IL-1ß and CXCL8 partially restored the defective neutrophil recruitment in AR-42-treated MOVI model fish embryos. We thus demonstrate that AR-42 non-cell-autonomously modulates neutrophil recruitment by suppressing transcriptional expression of cytokines/chemokines, thereby identifying AR-42 as a promising anti-inflammatory drug for treating sterile tissue injury-associated diseases.


Assuntos
Inibidores de Histona Desacetilases , Peixe-Zebra , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Infiltração de Neutrófilos , Neutrófilos , Quimiocinas , Peptídeo Hidrolases
7.
Int J Oncol ; 60(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35191516

RESUMO

Energy metabolism reprogramming is becoming an increasingly important hallmark of cancer. Specifically, cancers tend to undergo metabolic reprogramming to upregulate a cell­dependent glutamine (Gln) metabolism. Notably, hepatocellular cell adhesion molecule (HepaCAM) has been previously reported to serve a key role as a tumour suppressor. However, the possible regulatory role of HepaCAM in Gln metabolism in prostate cancer (PCa) remains poorly understood. In the present study, bioinformatics analysis predicted a significant negative correlation among the expression of HepaCAM, phosphatidylinositol­4,5­bisphosphate 3­kinase catalytic subunit α (PIK3CA), glutaminase (GLS) and solute carrier family 1 member 5 (SLC1A5), components of Gln metabolism, in clinical and genomic datasets. Immunohistochemistry results verified a negative correlation between HepaCAM and PIK3CA expression in PCa tissues. Subsequently, liquid chromatography­tandem mass spectrometry (LC­MS/MS) and gas chromatography­mass spectrometry (GC­MS) assays were performed, and the results revealed markedly reduced levels of Gln and metabolic flux in the blood samples of patients with PCa and in PCa cells. Mechanistically, overexpression of HepaCAM inhibited Gln metabolism and proliferation by regulating PIK3CA in PCa cells. In addition, Gln metabolism was discovered to be stress­resistant in PCa cells, since the expression levels of GLS and SLC1A5 remained high for a period of time after Gln starvation. However, overexpression of HepaCAM reversed this resistance to some extent. Additionally, alpelisib, a specific inhibitor of PIK3CA, effectively potentiated the inhibitory effects of HepaCAM overexpression on Gln metabolism and cell proliferation through mass spectrometry and CCK­8 experiments. In addition, the inhibitory effect of PIK3CA on the growth of tumor tissue in nude mice was also confirmed by immunohistochemistry in vivo. To conclude, the results from the present study revealed an abnormal Gln metabolic profile in the blood samples of patients with PCa, suggesting that it can be applied as a clinical diagnostic tool for PCa. Additionally, a key role of the HepaCAM/PIK3CA axis in regulating Gln metabolism, cell proliferation and tumour growth was identified. The combination of alpelisib treatment with the upregulation of HepaCAM expression may serve as a novel method for treating patients with PCa.


Assuntos
Proliferação de Células/genética , Glutamina/metabolismo , Transdução de Sinais/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/fisiologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Glutamina/genética , Masculino , Camundongos , Camundongos Nus/genética , Camundongos Nus/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/prevenção & controle
8.
Plants (Basel) ; 10(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435621

RESUMO

The cell wall plays an important role in responses to various stresses. The cellulose synthase-like gene (Csl) family has been reported to be involved in the biosynthesis of the hemicellulose backbone. However, little information is available on their involvement in plant tolerance to low-temperature (LT) stress. In this study, a total of 42 Csls were identified in Musa acuminata and clustered into six subfamilies (CslA, CslC, CslD, CslE, CslG, and CslH) according to phylogenetic relationships. The genomic features of MaCsl genes were characterized to identify gene structures, conserved motifs and the distribution among chromosomes. A phylogenetic tree was constructed to show the diversity in these genes. Different changes in hemicellulose content between chilling-tolerant and chilling-sensitive banana cultivars under LT were observed, suggesting that certain types of hemicellulose are involved in LT stress tolerance in banana. Thus, the expression patterns of MaCsl genes in both cultivars after LT treatment were investigated by RNA sequencing (RNA-Seq) technique followed by quantitative real-time PCR (qPCR) validation. The results indicated that MaCslA4/12, MaCslD4 and MaCslE2 are promising candidates determining the chilling tolerance of banana. Our results provide the first genome-wide characterization of the MaCsls in banana, and open the door for further functional studies.

10.
Am J Cancer Res ; 10(8): 2319-2336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32905533

RESUMO

Whole human genome microarray was performed to identify the potential molecular mechanisms associated with phospholipase C epsilon (PLCε). Gene Ontology, Kyoto Encyclopedia of Genes, and Genomes pathway analysis revealed that differentially expressed genes were significantly enriched in DNA repair-related pathways. Gene expression of PLCε, exonuclease 1 (EXO1), and ATM serine/threonine kinase (ATM) was significantly higher in 72 bladder cancer (BCa) tissue samples than in 24 samples of adjacent nonneoplastic tissue. The protein levels of PLCε and EXO1 showed appositive correlation in clinical bladder samples. Subsequent experiments showed that PLCε expression facilitated DNA repair in BCa by regulating ATM/EXO1 signaling. Additionally, we found that microRNA-145 is an antagonist of PLCε in T24 cells by directly targeting the 3'untranslated region of PLCε mRNA. Notably, microRNA-145 overexpression significantly increased the sensitivity to cisplatin, consistent with its PLCε silencing effect in BCa cells. Taken together, these findings reveal a novel physiological role for PLCε in DNA repair-related pathways with significant implications for the understanding of BCa biology.

11.
Am J Cancer Res ; 10(1): 196-210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32064161

RESUMO

The metabolic reprogramming is an important basis for the development of many tumors, including prostate cancer (PCa). Metabolic changes in many amino acids consist of serine and glycine affect the biological behavior of them. Phospholipase C epsilon (PLCε) plays an important role as an oncogene. However, its role in regulating amino acid metabolism remains unclear. In this study, results found significantly positive correlation between PLCε and Yes-associated protein (YAP) in PCa tissues. LC-MS/MS and GC-MS results further displayed abnormally elevated levels of serine, glycine and its some downstream metabolites in the blood of PCa patients. Secondly, PLCε knockdown can inhibit serine/glycine producing and proliferation of PCa both in vivo and in vitro. Mechanistically, PLCε may affect the serine/glycine metabolism by regulating dephosphorylation and nuclear translocation of YAP. More interestingly, verteporfin (VP, a specific inhibitor of YAP) could effectively enhance the PLCε-depletion induced inhibition of serine/glycine secretion and growth. Overall, this research revealed the possibility of anomalous serine/glycine levels in the blood for the diagnosis of PCa, identified the important role of the PLCε/YAP axis in regulating serine/glycine metabolism, cell proliferation and tumor growth, and suggested the combination of VP with PLCε-depletion may provide a new idea for the treatment of PCa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA