Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Bioinformatics ; 40(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38656970

RESUMO

MOTIVATION: Many diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the microenvironment. Stable isotope-resolved metabolomics (SIRM) and downstream data analyses are widely used techniques for unraveling cells' metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic solutions exist for the differential analysis of SIRM data, there is currently no available resource providing a comprehensive toolbox. RESULTS: In this work, we present DIMet, a one-stop comprehensive tool for differential analysis of targeted tracer data. DIMet accepts metabolite total abundances, isotopologue contributions, and isotopic mean enrichment, and supports differential comparison (pairwise and multi-group), time-series analyses, and labeling profile comparison. Moreover, it integrates transcriptomics and targeted metabolomics data through network-based metabolograms. We illustrate the use of DIMet in real SIRM datasets obtained from Glioblastoma P3 cell-line samples. DIMet is open-source, and is readily available for routine downstream analysis of isotope-labeled targeted metabolomics data, as it can be used both in the command line interface or as a complete toolkit in the public Galaxy Europe and Workfow4Metabolomics web platforms. AVAILABILITY AND IMPLEMENTATION: DIMet is freely available at https://github.com/cbib/DIMet, and through https://usegalaxy.eu and https://workflow4metabolomics.usegalaxy.fr. All the datasets are available at Zenodo https://zenodo.org/records/10925786.


Assuntos
Marcação por Isótopo , Metabolômica , Software , Metabolômica/métodos , Humanos , Marcação por Isótopo/métodos , Glioblastoma/metabolismo , Linhagem Celular Tumoral
2.
Anal Chem ; 96(33): 13652-13662, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110763

RESUMO

There is a lack of experimental electron ionization high-resolution mass spectra available to assist compound identification. The in silico generation of mass spectra by quantum chemistry can aid annotation workflows, in particular to support the identification of compounds that lack experimental reference spectra, such as environmental chemicals. We present an open-source, semiautomated workflow for the in silico prediction of electron ionization high-resolution mass spectra at 70 eV based on the QCxMS software. The workflow was applied to predict the spectra of 367 environmental chemicals, and the accuracy was evaluated by comparison to experimental reference spectra acquired. The molecular flexibility, number of rotatable bonds, and number of electronegative atoms of a compound were negatively correlated with prediction accuracy. Few analytes are predicted to sufficient accuracy for the direct application of predicted spectra in spectral matching workflows (overall average score 428). The m/z values of the top 5 most abundant ions of predicted spectra rarely match ions in experimental spectra, evidencing the disconnect between simulated fragmentation pathways and empirical reaction mechanisms.

3.
Environ Sci Technol ; 58(17): 7256-7269, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38641325

RESUMO

Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.


Assuntos
Exposição Ambiental , Expossoma , Humanos , Biologia Molecular
4.
Environ Sci Technol ; 58(29): 12784-12822, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38984754

RESUMO

In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.


Assuntos
Espectrometria de Massas , Humanos , Espectrometria de Massas/métodos , Expossoma , Metabolômica , Proteômica/métodos , Exposição Ambiental
5.
J Cheminform ; 16(1): 88, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075613

RESUMO

Mass spectral libraries have proven to be essential for mass spectrum annotation, both for library matching and training new machine learning algorithms. A key step in training machine learning models is the availability of high-quality training data. Public libraries of mass spectrometry data that are open to user submission often suffer from limited metadata curation and harmonization. The resulting variability in data quality makes training of machine learning models challenging. Here we present a library cleaning pipeline designed for cleaning tandem mass spectrometry library data. The pipeline is designed with ease of use, flexibility, and reproducibility as leading principles.Scientific contributionThis pipeline will result in cleaner public mass spectral libraries that will improve library searching and the quality of machine-learning training datasets in mass spectrometry. This pipeline builds on previous work by adding new functionality for curating and correcting annotated libraries, by validating structure annotations. Due to the high quality of our software, the reproducibility, and improved logging, we think our new pipeline has the potential to become the standard in the field for cleaning tandem mass spectrometry libraries.

6.
Environ Int ; 186: 108585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521044

RESUMO

The chemical burden on the environment and human population is increasing. Consequently, regulatory risk assessment must keep pace to manage, reduce, and prevent adverse impacts on human and environmental health associated with hazardous chemicals. Surveillance of chemicals of known, emerging, or potential future concern, entering the environment-food-human continuum is needed to document the reality of risks posed by chemicals on ecosystem and human health from a one health perspective, feed into early warning systems and support public policies for exposure mitigation provisions and safe and sustainable by design strategies. The use of less-conventional sampling strategies and integration of full-scan, high-resolution mass spectrometry and effect-directed analysis in environmental and human monitoring programmes have the potential to enhance the screening and identification of a wider range of chemicals of known, emerging or potential future concern. Here, we outline the key needs and recommendations identified within the European Partnership for Assessment of Risks from Chemicals (PARC) project for leveraging these innovative methodologies to support the development of next-generation chemical risk assessment.


Assuntos
Exposição Ambiental , Monitoramento Ambiental , Humanos , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Poluentes Ambientais/análise , Substâncias Perigosas/análise , Espectrometria de Massas/métodos , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA