Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7839): 620-624, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33361791

RESUMO

The range of applications for additive manufacturing is expanding quickly, including mass production of athletic footwear parts1, dental ceramics2 and aerospace components3 as well as fabrication of microfluidics4, medical devices5, and artificial organs6. The light-induced additive manufacturing techniques7 used are particularly successful owing to their high spatial and temporal control, but such techniques still share the common motifs of pointwise or layered generation, as do stereolithography8, laser powder bed fusion9, and continuous liquid interface production10 and its successors11,12. Volumetric 3D printing13-20 is the next step onward from sequential additive manufacturing methods. Here we introduce xolography, a dual colour technique using photoswitchable photoinitiators to induce local polymerization inside a confined monomer volume upon linear excitation by intersecting light beams of different wavelengths. We demonstrate this concept with a volumetric printer designed to generate three-dimensional objects with complex structural features as well as mechanical and optical functions. Compared to state-of-the-art volumetric printing methods, our technique has a resolution about ten times higher than computed axial lithography without feedback optimization, and a volume generation rate four to five orders of magnitude higher than two-photon photopolymerization. We expect this technology to transform rapid volumetric production for objects at the nanoscopic to macroscopic length scales.

2.
J Am Chem Soc ; 146(1): 45-50, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38033296

RESUMO

Multiple hydrogen-bonding motifs serve as important building blocks for molecular recognition and self-assembly. Herein, a photoswitchable quadruple hydrogen-bonding motif featuring near-complete, reversible, and thermostable conversion between DADA and AADD arrays associated with an alteration of their dimerization constants by over 3 orders of magnitude is reported. The system is based on a diarylethene featuring a ureidopyrimidin-4-ol moiety, which upon photoinduced ring closure and associated loss of aromaticity undergoes enol-keto tautomerization to a ureidopyrimidinone moiety. The latter causes a transformation of the hydrogen-bonding arrays and significantly weakens the free energy of dimerization in the case of the closed isomer. This photoswitchable quadruple hydrogen-bonding motif should allow us to spatially and temporarily direct self-assembly and supramolecular polymerization processes by light.

3.
J Am Chem Soc ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058407

RESUMO

The ability to correlate the structure of a molecule with its properties is the key to the rational and accelerated design of new functional compounds and materials. Taking photoswitches as an example, the thermal stability of the metastable state is a crucial property that dictates their application in molecular systems. Indigos have recently emerged as an attractive motif for designing photoswitchable molecules due to their red-light addressability, which can be advantageous in biomedical and material applications. The lack of synthetic techniques to derivatize the abundant parent dye and a thorough understanding of the impact of structural factors on the photochemical and thermal properties hinder broad applications of this emerging photoswitch class. Herein, we report an efficient copper-catalyzed indigo N-arylation that enables the installation of a wide variety of aryl moieties carrying useful functional groups. The exclusive selectivity for monoarylation likely originates from a bimetallic cooperative mechanism through a binuclear copper-indigo intermediate. Functional N-aryl-N'-alkylindigos were prepared and shown to photoisomerize efficiently under red light. Moreover, this design allows for the modulation of thermal half-lives through N-aryl substituents, while the N'-alkyl groups enable the independent attachment of functional moieties without affecting the photochromic properties. A strong correlation between the structure of the N-aryl moiety and the thermal stability of the photogenerated Z-isomers was achieved by multivariate linear regression models obtained through a data-science workflow. This work thus builds an avenue leading to versatile red-light photoswitches and a general method for structure-property correlation that is expected to be broadly applicable to the design of photoresponsive molecules.

4.
Bioconjug Chem ; 35(6): 780-789, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38809610

RESUMO

Targeted protein degradation is an innovative therapeutic strategy to selectively eliminate disease-causing proteins. Exemplified by proteolysis-targeting chimeras (PROTACs), they have shown promise in overcoming drug resistance and targeting previously undruggable proteins. However, PROTACs face challenges, such as low oral bioavailability and limited selectivity. The recently published PROxAb Shuttle technology offers a solution enabling the targeted delivery of PROTACs using antibodies fused with PROTAC-binding domains derived from camelid single-domain antibodies (VHHs). Here, a modular approach to quickly generate PROxAb Shuttles by enzymatically coupling PROTAC-binding VHHs to off-the-shelf antibodies was developed. The resulting conjugates retained their target binding and internalization properties, and incubation with BRD4-targeting PROTACs resulted in formation of defined PROxAb-PROTAC complexes. These complexes selectively induced degradation of the BRD4 protein, resulting in cytotoxicity specifically to cells expressing the antibody's target. The chemoenzymatic approach described herein provides a versatile and efficient solution for generating antibody-VHH conjugates for targeted protein degradation applications, but it could also be used to combine antibodies and VHH binders to generate bispecific antibodies for further applications.


Assuntos
Anticorpos Biespecíficos , Proteólise , Humanos , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/imunologia , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Proteínas que Contêm Bromodomínio
5.
Chemistry ; 30(11): e202303654, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38085655

RESUMO

Emerging applications of photochromic compounds demand new molecular designs that can be inspired by some long-known yet currently forgotten classes of photoswitches. In the present review, we remind the community about Peri-AryloxyQuinones (PAQs) and their unique photoswitching behavior originally discovered more than 50 years ago. At the heart of this phenomenon is the light-induced migration of an aromatic moiety (arylotropy) in peri-aryloxy-substituted quinones resulting in ana-quinones. PAQs feature absorbance of both isomers in the visible spectral region, photochromism in the amorphous and crystalline state, and thermal stability of the photogenerated ana-isomer. Particularly noticeable is the high sensitivity of the ana-isomer towards nucleophiles in solution. In addition to the mechanism of molecular photochromism and the underlaying structure-switch relationships, we analyze potential applications and prospects of aryloxyquinones in optically switchable materials and devices. Due to their ability to efficiently photoswitch in the solid state, PAQs are indeed attractive candidates for such materials and devices, including electronics (optically controllable circuits, switches, transistors, memories, and displays), porous crystalline materials, crystalline actuators, photoactivated sensors, and many more. This review is intended to serve as a guide for researchers who wish to use photoswitchable PAQs in the development of new photocontrollable materials, devices, and processes.

6.
Angew Chem Int Ed Engl ; 63(8): e202318015, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38116882

RESUMO

The exceptional thermal stability of diarylethene closed isomers enabled many applications but also prevented utilization in photochromic systems that require rapid thermal reversibility. Herein, we report the diaryltriazolium (DAT+ ) photoswitch undergoing thermal cycloreversion within a few milliseconds and absorption of the closed form in the near-infrared region above 900 nm. Click chemistry followed by alkylation offers modular and fast access to the electron-deficient DAT+ scaffold. In addition to excellent fatigue resistance, the introduced charge increases water solubility, rendering this photoswitch an ideal candidate for exploring biological applications.

7.
Angew Chem Int Ed Engl ; 63(31): e202404528, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38722260

RESUMO

Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo-switches-the most extensively studied photoswitches, we demonstrate effective solar E→Z photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight-driven azo-switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine-tuning of spectral window that extends light absorption beyond 600 nm. Notably, back-photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light-reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light-driven systems and efficient solar energy technologies.

8.
J Am Chem Soc ; 145(33): 18205-18209, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37561921

RESUMO

Conjugated single-layered two-dimensional covalent organic frameworks are flat and extended polymer networks with a unique combination of material properties, giving rise to potential applications in sensing, optoelectronics, and photonics. Despite their great potential, thus far only a few reactions to access such extended conjugated 2D polymers have been reported. Here, the on-surface polymerization of the first vinylene-linked single layered two-dimensional covalent organic framework using reversible Knoevenagel polycondensation under solvothermal conditions is described. Self-assembly of the two monomer building blocks at the solid-liquid interface led to the formation of extended covalent networks at room temperature without the need of additional catalysts or reagents. The described approach grants access to extended conjugated 2D polymers under unprecedentedly mild conditions and paves the way to new hybrid material systems.

9.
Bioconjug Chem ; 34(12): 2221-2233, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38054705

RESUMO

A crucial design feature for the therapeutic success of antibody-drug conjugates (ADCs) is the linker that connects the antibody with the drug. Linkers must be stable in circulation and efficiently release the drug inside the target cell, thereby having a fundamental impact on ADC pharmacokinetics and efficacy. The variety of enzymatically cleavable linkers applied in ADCs is limited, and some are believed to be associated with unwanted side effects due to the expression of cleavage-mediating enzymes in nonmalignant cells. Based on a bioinformatic screen of lysosomal enzymes, we identified α-l-iduronidase (IduA) as an interesting candidate for ADC linker cleavage because of its low expression in normal tissues and its overexpression in several tumor types. In the present study, we report a novel IduA-cleavable ADC linker using exatecan and duocarmycin as payloads. We showed the functionality of our linker system in cleavage assays using recombinant IduA or cell lysates and compared it to established ADC linkers. Subsequently, we coupled iduronide-exatecan via interchain cysteines or iduronide-duocarmycin via microbial transglutaminase (mTG) to an anti-CEACAM5 (aCEA5) antibody. The generated iduronide-exatecan ADC showed high serum stability and similar target-dependent tumor cell killing in the subnanomolar range but reduced toxicity on nonmalignant cells compared to an analogous cathepsin B-activatable valine-citrulline-exatecan ADC. Finally, in vivo antitumor activity could be demonstrated for an IduA-cleavable duocarmycin ADC. The presented results emphasize the potential of iduronide linkers for ADC development and represent a tool for further balancing out tumor selectivity and safety.


Assuntos
Antineoplásicos , Imunoconjugados , Imunoconjugados/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Iduronidase , Duocarmicinas , Anticorpos Monoclonais , Linhagem Celular Tumoral
10.
Chemistry ; 29(43): e202300981, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37099319

RESUMO

Indigo, one of the most ancient and abundant dyes in human history, has recently emerged as a potential functional motif due to its intriguing photochemical properties. This review aims to provide insights into both the preparation of these molecules and their utilization in molecular systems. First, the synthesis of the indigo core as well as available methods to derivatize indigo are described to outline synthetic strategies to build the desired molecular structures. Then, the photochemical behavior of indigos is discussed, with particular focus on E-Z photoisomerization and photoinduced electron transfer. Connections between the molecular structures and their photochemical properties are highlighted and serve as guiding principles for designing indigos to be applied as photoresponsive tools.

11.
Biol Chem ; 403(5-6): 525-534, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34535048

RESUMO

The exposition of cancer cells to cytotoxic doses of payload is fundamental for the therapeutic efficacy of antibody drug conjugates (ADCs) in solid cancers. To maximize payload exposure, tissue penetration can be increased by utilizing smaller-sized drug conjugates which distribute deeper into the tumor. Our group recently explored small human epidermal growth factor receptor 2 (HER2) targeting Fc antigen binding fragments (Fcabs) for ADC applications in a feasibility study. Here, we expand this concept using epidermal growth factor receptor (EGFR) targeting Fcabs for the generation of site-specific auristatin-based drug conjugates. In contrast to HER2-targeting Fcabs, we identified novel conjugation sites in the EGFR-targeting Fcab scaffold that allowed for higher DAR enzymatic conjugation. We demonstrate feasibility of resultant EGFR-targeting Fcab-drug conjugates that retain binding to half-life prolonging neonatal Fc receptor (FcRn) and EGFR and show high serum stability as well as target receptor mediated cell killing at sub-nanomolar concentrations. Our results emphasize the applicability of the Fcab format for the generation of drug conjugates designed for increased penetration of solid tumors and potential FcRn-driven antibody-like pharmacokinetics.


Assuntos
Antineoplásicos , Imunoconjugados , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Imunoconjugados/química , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Recém-Nascido , Ligação Proteica
12.
Chemistry ; 28(26): e202200496, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35235237

RESUMO

N,N'-disubstituted indigos are photoswitchable molecules that have recently caught the attention due to their addressability by red-light. When alkyl and aryl groups are utilized as the N-substituents, the thermal half-lives of Z isomers can be tuned independently while maintaining the advantageous red-shifted absorption spectra. To utilize these molecules in real-world applications, it is of immense importance to understand how their molecular structures as well as the environment influence their switching properties. To this end, we probed their photoisomerization mechanism by carrying out photophysical and computational studies in solvents of different polarities. The fluorescence and transient absorption experiments suggest for more polar excited and transition states, which explains the bathochromic shifts of absorption spectra and shorter thermal half-lives. On the other hand, the quantum chemical calculations reveal that in contrast to N-carbonyl groups, N-alkyl and N-aryl substituents are not strongly conjugated with the indigo chromophore and can thus serve as a tool for tuning the thermal stability of Z isomers. Both approaches are combined to provide in-depth understandings of how indigos undergo photoswitching as well as how they are influenced by N-substituent and the chemical surroundings. These mechanistic insights will serve as guiding principles for designing molecules eyeing broader applications.


Assuntos
Índigo Carmim , Luz , Fluorescência , Índigo Carmim/química , Estrutura Molecular , Solventes/química
13.
Angew Chem Int Ed Engl ; 61(21): e202202492, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35253336

RESUMO

Vinylene-linked two-dimensional conjugated covalent organic frameworks (V-2D-COFs), belonging to the class of two-dimensional conjugated polymers, have attracted increasing attention due to their extended π-conjugation over the 2D backbones associated with high chemical stability. The Knoevenagel polycondensation has been demonstrated as a robust synthetic method to provide cyano (CN)-substituted V-2D-COFs with unique optoelectronic, magnetic, and redox properties. Despite the successful synthesis, it remains elusive for the relevant polymerization mechanism, which leads to relatively low crystallinity and poor reproducibility. In this work, we demonstrate the novel synthesis of CN-substituted V-2D-COFs via the combination of Knoevenagel polycondensation and water-assisted dynamic Michael-addition-elimination, abbreviated as KMAE polymerization. The existence of C=C bond exchange between two diphenylacrylonitriles (M1 and M6) is firstly confirmed via in situ high-temperature NMR spectroscopy study of model reactions. Notably, the intermediate M4 synthesized via Michael-addition can proceed the Michael-elimination quantitatively, leading to an efficient C=C bond exchange, unambiguously confirming the dynamic nature of Michael-addition-elimination. Furthermore, the addition of water can significantly promote the reaction rate of Michael-addition-elimination for highly efficient C=C bond exchange within 5 mins. As a result, the KMAE polymerization provides a highly efficient strategy for the synthesis of CN-substituted V-2D-COFs with high crystallinity, as demonstrated by four examples of V-2D-COF-TFPB-PDAN, V-2D-COF-TFPT-PDAN, V-2D-COF-TFPB-BDAN, and V-2D-COF-HATN-BDAN, based on the simulated and experimental powder X-ray diffraction (PXRD) patterns as well as N2 -adsorption-desorption measurements. Moreover, high-resolution transmission electron microscopy (HR-TEM) analysis shows crystalline domain sizes ranging from 20 to 100 nm for the newly synthesized V-2D-COFs.

14.
J Am Chem Soc ; 143(24): 9162-9168, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34115485

RESUMO

Cyanodiarylethene chromophores are able to undergo constitutional exchange via dynamic covalent chemistry (DCC). During this process, the central ethylene bridge of the molecular scaffold can be broken and thereby enables the assembly of a new combination of aryl moieties around the reformed ethylene bridge. The reversible C═C double bond exchange has exemplarily been investigated using α-cyanostilbenes. Establishing a dynamic equilibrium reaction from α-cyanodiarylethene with arylacetonitriles under mild conditions has been the basis to access constitutional libraries of new photoswitches with potentially improved properties. When subject to irradiation with light of adequate wavelength, α-cyanodiarylethenes undergo Z/E isomerization followed by ring-closure. By screening the thus accessible dynamic chromophore libraries using a desired detection wavelength, we could identify specific dithienyl analogues that exhibit three-state photochromism. The combination of dynamic constitutional libraries of functional chromophores in combination with the light-guided screening and selection should lead to more rapid exploration of structural diversity dye chemistry.

15.
J Am Chem Soc ; 143(18): 7059-7068, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33915047

RESUMO

The ability to dynamically control chirality remains a grand challenge in chemistry. Although many molecules possess chiral isomers, lacking their isolation, for instance during photoisomerization, results in racemic mixtures with suppressed enantiospecific chiral properties. Here, we present a nanoporous solid in which chirality and enantioselective enrichment is induced by circularly polarized light (CPL). The material is based on photoswitchable fluorinated azobenzenes attached to the scaffold of a crystalline metal-organic framework (MOF). The azobenzene undergoes trans-to-cis-photoisomerization upon irradiation with green light and reverts back to trans upon violet light. While each moiety in cis conformation is chiral, we show the trans isomer also possesses a nonplanar, chiral conformation. During photoisomerization with unpolarized light, no enantiomeric enrichment is observed and both isomers, R- and S-cis as well as R- and S-trans, respectively, are formed in identical quantities. In contrast, CPL causes chiral photoresolution, resulting in an optically active material. Right-CPL selectively excites R-cis and R-trans enantiomers, producing a MOF with enriched S-enantiomers, and vice versa. The induction of optical activity is reversible and only depends on the light-handedness. As shown by first-principle DFT calculations, while both, trans and cis, are stabilized in nonplanar, chiral conformations in the MOF, the trans isomer adopts a planar, achiral form in solution, as verified experimentally. This shows that the chiral photoresolution is enabled by the linker reticulation in the MOF. Our study demonstrates the induction of chirality and optical activity in solid materials by CPL and opens new opportunities for chiral resolution and information storage with CPL.

16.
Bioconjug Chem ; 32(8): 1699-1710, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34185508

RESUMO

Fragment crystallizable (Fc) antigen binding fragments (Fcabs) represent a novel antibody format comprising a homodimeric Fc region with an engineered antigen binding site. In contrast to their full-length antibody offspring, Fcabs combine Fc-domain-mediated and antigen binding functions at only one-third of the size. Their reduced size is accompanied by elevated tissue penetration capabilities, which is an attractive feature for the treatment of solid tumors. In the present study, we explored for the first time Fcabs as a novel scaffold for antibody-drug conjugates (ADCs). As model, various HER2-targeting Fcab variants coupled to a pH-sensitive dye were used in internalization experiments. A selective binding on HER2-expressing tumor cells and receptor-mediated endocytosis could be confirmed for selected variants, indicating that these Fcabs meet the basic prerequisite for an ADC approach. Subsequently, Fcabs were site-specifically coupled to cytotoxic monomethyl auristatin E yielding homogeneous conjugates. The conjugates retained HER2 and FcRn binding behavior of the parent Fcabs, showed a selective in vitro cell killing and conjugation site-dependent serum stability. Moreover, Fcab conjugates showed elevated penetration in a spheroid model, compared to their full-length antibody and Trastuzumab counterparts. Altogether, the presented results emphasize the potential of Fcabs as a novel scaffold for targeted drug delivery in solid cancers and pave the way for future in vivo translation.


Assuntos
Sistemas de Liberação de Medicamentos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/química , Anticorpos Monoclonais Humanizados/química , Sítios de Ligação , Linhagem Celular Tumoral , Corantes Fluorescentes , Humanos , Modelos Moleculares , Proteínas de Neoplasias , Ligação Proteica , Receptor ErbB-2 , Esferoides Celulares , Trastuzumab
17.
J Phys Chem A ; 125(17): 3681-3688, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33885299

RESUMO

Photoswitchable diarylethenes provide a unique opportunity to optically modulate frontier molecular orbital energy levels, thereby opening an avenue for the design of electronic devices such as photocontrollable organic field-effect transistors (OFETs). In the present work, the absolute position of the frontier orbital levels of nonsymmetrical diarylethenes based on a cyclopentenone bridge has been studied using cyclic voltammetry and density functional theory (DFT) calculations. It has been shown that varying heteroaromatic substituents make it possible to change the absolute positions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of both diarylethene photoisomers. The data obtained are used to refine the operation mechanism of the previously developed OFET devices, employing the cyclopentenone-derived diarylethenes at the dielectric/semiconductor interface.

18.
J Am Chem Soc ; 142(27): 11857-11864, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32476422

RESUMO

The use of low-intensity NIR light to operate molecular switches offers several potential advantages including enhanced penetration into bulk materials, in particular biological tissues, and reduced radiation damage due to the limited photon energies. The latter, however, pose a challenge for designing reasonably bistable systems. We have developed a general design strategy for direct one-photon NIR photoswitches based on negative photochromic dihydropyrenes carrying opposing strong donor-acceptor substituents either along the long axis of the molecule or across it. Thus, two series of 2,7- and 4,9-disubstituted dihydropyrenes were synthesized, and their photothermal properties investigated as a function of the type, strength, and position of the attached donor and acceptor substituents as well as the polarity of the environment. By shifting the excitation wavelength deep into the NIR, both NIR one-photon absorption cross-section and photoisomerization efficiency could be maximized while retaining a reasonable thermal stability of the metastable cyclophanediene isomer. Thus, the lowest optical transition was shifted beyond 900 nm, the NIR cross-section was enhanced by two orders of magnitude, and the thermal half-lives vary between milliseconds and hours. These unique features open up ample opportunities for noninvasive, optically addressable materials and material systems.

19.
J Am Chem Soc ; 142(25): 11050-11059, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32484344

RESUMO

The integration of photochromic molecules into semiconducting polymer matrices via blending has recently attracted a great deal of attention, as it provides the means to reversibly modulate the output signal of electronic devices by using light as a remote control. However, the structural and electronic interactions between photochromic molecules and semiconducting polymers are far from being fully understood. Here we perform a comparative investigation by combining two photochromic diarylethene moieties possessing similar energy levels yet different propensity to aggregate with five prototypical polymer semiconductors exhibiting different energy levels and structural order, ranging from amorphous to semicrystalline. Our in-depth photochemical, structural, morphological, and electrical characterization reveals that the photoresponsive behavior of thin-film transistors including polymer/diarylethenes blends as the active layer is governed by a complex interplay between the relative position of the energy levels and the polymer matrix microstructure. By matching the energy levels and optimizing the molecular packing, high-performance optically switchable organic thin-film transistors were fabricated. These findings represent a major step forward in the fabrication of light-responsive organic devices.

20.
Bioconjug Chem ; 31(4): 1070-1076, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32134638

RESUMO

Site-specific bioconjugation technologies are frequently employed to generate homogeneous antibody-drug conjugates (ADCs) and are generally considered superior to stochastic approaches like lysine coupling. However, most of the technologies developed so far require undesired manipulation of the antibody sequence or its glycan structures. Herein, we report the successful engineering of microbial transglutaminase enabling efficient, site-specific conjugation of drug-linker constructs to position HC-Q295 of native, fully glycosylated IgG-type antibodies. ADCs generated via this approach demonstrate excellent stability in vitro as well as strong efficacy in vitro and in vivo. As it employs different drug-linker structures and several native antibodies, our study additionally proves the broad applicability of this approach.


Assuntos
Imunoconjugados/metabolismo , Engenharia de Proteínas , Transglutaminases/genética , Transglutaminases/metabolismo , Sítios de Ligação , Streptomyces/enzimologia , Transglutaminases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA