Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(9): 1564-1577, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34289339

RESUMO

A critical challenge in genetic diagnostics is the computational assessment of candidate splice variants, specifically the interpretation of nucleotide changes located outside of the highly conserved dinucleotide sequences at the 5' and 3' ends of introns. To address this gap, we developed the Super Quick Information-content Random-forest Learning of Splice variants (SQUIRLS) algorithm. SQUIRLS generates a small set of interpretable features for machine learning by calculating the information-content of wild-type and variant sequences of canonical and cryptic splice sites, assessing changes in candidate splicing regulatory sequences, and incorporating characteristics of the sequence such as exon length, disruptions of the AG exclusion zone, and conservation. We curated a comprehensive collection of disease-associated splice-altering variants at positions outside of the highly conserved AG/GT dinucleotides at the termini of introns. SQUIRLS trains two random-forest classifiers for the donor and for the acceptor and combines their outputs by logistic regression to yield a final score. We show that SQUIRLS transcends previous state-of-the-art accuracy in classifying splice variants as assessed by rank analysis in simulated exomes, and is significantly faster than competing methods. SQUIRLS provides tabular output files for incorporation into diagnostic pipelines for exome and genome analysis, as well as visualizations that contextualize predicted effects of variants on splicing to make it easier to interpret splice variants in diagnostic settings.


Assuntos
Algoritmos , Curadoria de Dados/métodos , Doenças Genéticas Inatas/genética , Sítios de Splice de RNA , Splicing de RNA , Software , Sequência de Bases , Biologia Computacional/métodos , Exoma , Éxons , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons , Mutação , Sequenciamento do Exoma
2.
Nucleic Acids Res ; 47(D1): D1018-D1027, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30476213

RESUMO

The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO's interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Anormalidades Congênitas/genética , Predisposição Genética para Doença/genética , Bases de Conhecimento , Doenças Raras/genética , Anormalidades Congênitas/diagnóstico , Bases de Dados Genéticas , Variação Genética , Humanos , Internet , Fenótipo , Doenças Raras/diagnóstico , Sequenciamento Completo do Genoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA