Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Ecol ; 33(6): e17291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343177

RESUMO

The hypothalamic-pituitary-adrenal (HPA) axis coordinates an organism's response to environmental stress. The responsiveness and sensitivity of an offspring's stress response may be shaped not only by stressors encountered in their early post-natal environment but also by stressors in their parent's environment. Yet, few studies have considered how stressors encountered in both of these early life environments may function together to impact the developing HPA axis. Here, we manipulated stressors in the parental and post-natal environments in a population of house sparrows (Passer domesticus) to assess their impact on changes in DNA methylation (and corresponding gene expression) in a suite of genes within the HPA axis. We found that nestlings that experienced early life stress across both life-history periods had higher DNA methylation in a critical HPA axis gene, the glucocorticoid receptor (NR3C1). In addition, we found that the life-history stage when stress was encountered impacted some genes (HSD11B1, NR3C1 and NR3C2) differently. We also found evidence for the mitigation of parental stress by post-natal stress (in HSD11B1 and NR3C2). Finally, by assessing DNA methylation in both the brain and blood, we were able to evaluate cross-tissue patterns. While some differentially methylated regions were tissue-specific, we found cross-tissue changes in NR3C2 and NR3C1, suggesting that blood is a suitable tissue for assessing DNA methylation as a biomarker of early life stress. Our results provide a crucial first step in understanding the mechanisms by which early life stress in different life-history periods contributes to changes in the epigenome of the HPA axis.


Assuntos
Metilação de DNA , Sistema Hipotálamo-Hipofisário , Pardais , Sistema Hipotálamo-Hipofisário/metabolismo , Metilação de DNA/genética , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Estresse Fisiológico/genética , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo
2.
Am Nat ; 202(1): 78-91, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37384761

RESUMO

AbstractDeveloping organisms often plastically modify growth in response to environmental circumstances, which may be adaptive but is expected to entail long-term costs. However, the mechanisms that mediate these growth adjustments and any associated costs are less well understood. In vertebrates, one mechanism that may be important in this context is the highly conserved signaling factor insulin-like growth factor 1 (IGF-1), which is frequently positively related to postnatal growth and negatively related to longevity. To test this idea, we exposed captive Franklin's gulls (Leucophaeus pipixcan) to a physiologically relevant nutritional stressor by restricting food availability during postnatal development and examined the effects on growth, IGF-1, and two potential biomarkers of cellular and organismal aging (oxidative stress and telomeres). During food restriction, experimental chicks gained body mass more slowly and had lower IGF-1 levels than controls. Following food restriction, experimental chicks underwent compensatory growth, which was accompanied by an increase in IGF-1 levels. Interestingly, however, there were no significant effects of the experimental treatment or of variation in IGF-1 levels on oxidative stress or telomeres. These findings suggest that IGF-1 is responsive to changes in resource availability but is not associated with increased markers of cellular aging during development in this relatively long-lived species.


Assuntos
Charadriiformes , Fator de Crescimento Insulin-Like I , Animais , Senescência Celular , Envelhecimento , Alimentos
3.
Mol Ecol ; 32(22): 5959-5970, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837282

RESUMO

An individual's telomere length early in life may reflect or contribute to key life-history processes sensitive to environmental variation. Yet, the relative importance of genetic and environmental factors in shaping early-life telomere length is not well understood as it requires samples collected from multiple generations with known developmental histories. We used a confirmed pedigree and conducted an animal model analysis of telomere lengths obtained from nestling house sparrows (Passer domesticus) sampled over a span of 22 years. We found significant additive genetic variation for early-life telomere length, but it comprised a small proportion (9%) of the total biological variation. Three sources of environmental variation were important: among cohorts, among-breeding attempts within years, and among nestmates. The magnitude of variation among breeding attempts and among nestmates also differed by cohort, suggesting that interactive effects of environmental factors across time or spatial scales were important, yet we were unable to identify the specific causes of these interactions. The mean amount of precipitation during the breeding season positively predicted telomere length, but neither weather during a given breeding attempt nor date in the breeding season contributed to an offspring's telomere length. At the level of individual nestlings, offspring sex, size and mass at 10 days of age also did not predict telomere length. Environmental effects appear especially important in shaping early-life telomere length in some species, and more focus on how environmental factors that interact across scales may help to explain some of the variation observed among studies.


Assuntos
Encurtamento do Telômero , Telômero , Humanos , Animais , Encurtamento do Telômero/genética , Telômero/genética , Estações do Ano , Longevidade
4.
Gen Comp Endocrinol ; 341: 114336, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328040

RESUMO

Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Masculino , Feminino , Animais , Epigênese Genética , Metilação de DNA , Mamíferos
5.
Proc Biol Sci ; 289(1982): 20220868, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36069016

RESUMO

Parental stress often has long-term consequences for offspring. However, the mechanisms underlying these effects and how they are shaped by conditions offspring subsequently experience are poorly understood. Telomeres, which often shorten in response to stress and predict longevity, may contribute to, and/or reflect these cross-generational effects. Traditionally, parental stress is expected to have negative effects on offspring telomeres, but experimental studies in captive animals suggest that these effects may depend on the subsequent conditions that offspring experience. Yet, the degree to which parental stress influences and interacts with stress experienced by offspring to affect offspring telomeres and survival in free-living organisms is unknown. To assess this, we experimentally manipulated the stress exposure of free-living parent and offspring house sparrows (Passer domesticus). We found a weak, initial, negative effect of parental stress on offspring telomeres, but this effect was no longer evident at the end of post-natal development. Instead, the effects of parental stress depended on the natural sources of stress that offspring experienced during post-natal development whereby some outcomes were improved under more stressful rearing conditions. Thus, the effects of parental stress on offspring telomeres and survival are context-dependent and may involve compensatory mechanisms of potential benefit under some circumstances.


Assuntos
Pardais , Animais , Longevidade , Pardais/fisiologia , Telômero
6.
Mol Ecol ; 31(23): 6216-6223, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33503312

RESUMO

Reproductive investment often comes at a cost to longevity, but the mechanisms that underlie these long-term effects are not well understood. In male vertebrates, elevated testosterone has been shown to increase reproductive success, but simultaneously to decrease survival. One factor that may contribute to or serve as a biomarker of these long-term effects of testosterone on longevity is telomeres, which are often positively related to lifespan and have been shown to shorten in response to reproduction. In this longitudinal study, we measured the effects of experimentally elevated testosterone on telomere shortening in free-living, male dark-eyed juncos (Junco hyemalis carolinensis), a system in which the experimental elevation of testosterone has previously been shown to increase reproductive success and reduce survival. We found a small, significant effect of testosterone treatment on telomeres, with testosterone-treated males exhibiting significantly greater telomere shortening with age than controls. These results are consistent with the hypothesis that increased telomere shortening may be a long-term cost of elevated testosterone exposure. As both testosterone and telomeres are conserved physiological mechanisms, our results suggest that their interaction may apply broadly to the long-term costs of reproduction in male vertebrates.


Assuntos
Passeriformes , Aves Canoras , Animais , Masculino , Aves Canoras/genética , Estudos Longitudinais , Reprodução/fisiologia , Testosterona , Telômero/genética
7.
Gen Comp Endocrinol ; 329: 114108, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988638

RESUMO

In vertebrates, exposure to diverse stressors during early life activates a stress response that can initiate compensatory mechanisms or promote cellular damage with long-term fitness consequences. A growing number of studies associate exposure to stressors during early life with increased damage to telomeres (i.e., promoting the shortening of these highly conserved, repeating sequences of non-coding DNA at chromosome ends). However, some studies show no such relationship, suggesting that the nature, timing, and context of these challenges may determine the degree to which physiological mediators of the stress response act in a damage-mitigating or damage promoting way in relation to telomere dynamics. In free-living eastern bluebirds (Sialia sialis), we have previously demonstrated that bouts of offspring cooling that occur when brooding females leave the nest increase at least one such physiological mediator of the stress response (circulating glucocorticoids), suggesting that variation in patterns of maternal brooding may result in different impacts on telomere dynamics at a young age. Here we experimentally tested whether repeated bouts of ecologically relevant offspring cooling affected telomere dynamics during post-natal development. Rates of telomere shortening during the nestling stage were not affected by experimental cooling, but they were affected by brood size and the rate of growth during the nestling stage. Our data suggest that the effects of developmental stress exposure on offspring telomeres are often context-dependent and that not all challenges that increase physiological mediators of stress result in damage to telomeres. Under some conditions, physiological mediators of stress may instead act as protective regulators, allowing for optimization of fitness outcomes in the face of environmental challenges.


Assuntos
Corticosterona , Aves Canoras , Animais , Feminino , Estresse Fisiológico , Telômero , Encurtamento do Telômero , Aves Canoras/fisiologia
8.
Bioessays ; 42(9): e1900227, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32734707

RESUMO

Parental age at offspring conception often influences offspring longevity, but the mechanisms underlying this link are poorly understood. One mechanism that may be important is telomeres, highly conserved, repetitive sections of non-coding DNA that form protective caps at chromosome ends and are often positively associated with longevity. Here, the potential pathways by which the age of the parents at the time of conception may impact offspring telomeres are described first, including direct effects on parental gamete telomeres and indirect effects on offspring telomere loss during pre- or post-natal development. Then a surge of recent studies demonstrating the effects of parental age on offspring telomeres in diverse taxa are reviewed. In doing so, important areas for future research and experimental approaches that will enhance the understanding of how and when these effects likely occur are highlighted. It is concluded by considering the potential evolutionary consequences of parental age on offspring telomeres.


Assuntos
Longevidade , Telômero , Humanos , Longevidade/genética , Pais , Telômero/genética , Encurtamento do Telômero
9.
Proc Biol Sci ; 288(1951): 20210560, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034512

RESUMO

The mechanisms that contribute to variation in lifetime reproductive success are not well understood. One possibility is that telomeres, conserved DNA sequences at chromosome ends that often shorten with age and stress exposures, may reflect differences in vital processes or influence fitness. Telomere length often predicts longevity, but longevity is only one component of fitness and little is known about how lifetime reproductive success is related to telomere dynamics in wild populations. We examined the relationships between telomere length beginning in early life, telomere loss into adulthood and lifetime reproductive success in free-living house sparrows (Passer domesticus). We found that females, but not males, with longer telomeres during early life had higher lifetime reproductive success, owing to associations with longevity and not reproduction per year or attempt. Telomeres decreased with age in both sexes, but telomere loss was not associated with lifetime reproductive success. In this species, telomeres may reflect differences in quality or condition rather than the pace of life, but only in females. Sexually discordant selection on telomeres is expected to influence the stability and maintenance of within population variation in telomere dynamics and suggests that any role telomeres play in mediating life-history trade-offs may be sex specific.


Assuntos
Pardais , Telômero , Animais , Feminino , Longevidade , Masculino , Reprodução , Pardais/genética , Telômero/genética , Encurtamento do Telômero
10.
Mol Ecol ; 28(1): 114-126, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565787

RESUMO

Annual reproductive success is often highest in individuals that initiate breeding early, yet relatively few individuals start breeding during this apparently optimal time. This suggests that individuals, particularly females who ultimately dictate when offspring are born, incur costs by initiating reproduction early in the season. We hypothesized that increases in the ageing rate of somatic cells may be one such cost. Telomeres, the repetitive DNA sequences on the ends of chromosomes, may be good proxies of biological wear and tear as they shorten with age and in response to stress. Using historical data from a long-term study population of dark-eyed juncos (Junco hyemalis), we found that telomere loss between years was greater in earlier breeding females, regardless of chronological age. There was no relationship between telomere loss and the annual number of eggs laid or chicks that reached independence. However, telomere loss was greater when temperatures were cooler, and cooler temperatures generally occur early in the season. This suggests that environmental conditions could be the primary cause of accelerated telomere loss in early breeders.


Assuntos
Reprodução/genética , Aves Canoras/genética , Telômero/genética , Animais , Cruzamento , Feminino , Masculino , Reprodução/fisiologia , Estações do Ano , Aves Canoras/fisiologia
11.
Am Nat ; 191(6): 777-782, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750556

RESUMO

Female vertebrates that breed earlier in the season generally have greater reproductive success. However, evidence suggests that breeding early may be costly, thus leading to the prediction that females with fewer future reproductive events will breed earlier in the season. While chronological age is a good indicator of remaining life span, telomere lengths may also be good biomarkers of longevity as they potentially reflect lifetime wear and tear (i.e., biological age). We examined whether variation in the timing of the first seasonal clutch was related to age and telomere length in female dark-eyed juncos (Junco hyemalis), predicting that older females and those with shorter telomeres would breed earlier. Both predictions held true and were independent of each other, as telomere length did not significantly vary with age. These results suggest that females may adjust their reproductive effort based on both chronological and biological age.


Assuntos
Envelhecimento/fisiologia , Passeriformes/fisiologia , Reprodução , Comportamento Sexual Animal , Telômero , Animais , Feminino
12.
Biol Lett ; 11(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26538535

RESUMO

Although exposure to stressors is known to increase disease susceptibility and accelerate ageing, evidence is accumulating that these effects can span more than one generation. Stressors experienced by parents have been reported to negatively influence the longevity of their offspring and even grand offspring. The mechanisms underlying these long-term, cross-generational effects are still poorly understood, but we argue here that telomere dynamics are likely to play an important role. In this review, we begin by surveying the current connections between stress and telomere dynamics. We then lay out the evidence that exposure to stressors in the parental generation influences telomere dynamics in offspring and potentially subsequent generations. We focus on evidence in mammalian and avian studies and highlight several promising areas where our understanding is incomplete and future investigations are critically needed. Understanding the mechanisms that link stress exposure across generations requires interdisciplinary studies and is essential to both the biomedical community seeking to understand how early adversity impacts health span and evolutionary ecologists interested in how changing environmental conditions are likely to influence age-structured population dynamics.


Assuntos
Envelhecimento/fisiologia , Epigênese Genética , Estresse Fisiológico/fisiologia , Telômero/genética , Animais , Aves/genética , Aves/fisiologia , Meio Ambiente , Longevidade/genética , Mamíferos/genética , Mamíferos/fisiologia , Encurtamento do Telômero/genética , Encurtamento do Telômero/fisiologia
13.
Gen Comp Endocrinol ; 210: 38-45, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25449182

RESUMO

Determining the physiological mechanisms underpinning life-history decisions is essential for understanding the constraints under which life-history strategies can evolve. In long-lived species, where the residual reproductive value of breeders is high, adult survival is a key contributor to lifetime reproductive success. We therefore expect that when adult survival is compromised during reproduction, mechanisms will evolve to redirect resources away from reproduction, with implications for reproductive hormones, adult body mass, nest attendance behaviour and breeding success. We investigated whether manipulating corticosterone, to simulate exposure to an environmental stressor, affected the secretion of prolactin and breeding success in the black-legged kittiwake Rissa tridactyla. We used implanted Alzet® osmotic pumps to administer corticosterone to incubating kittiwakes at a constant rate over a period of approximately 8days. Manipulated birds were compared with sham implanted birds and control birds, which had no implants. There was no significant difference in the body mass of captured individuals at the time of implantation and implant removal. Corticosterone-implanted males showed lower nest attendance during the chick rearing period compared to sham-implanted males; the opposite pattern was found in females. Corticosterone treated birds showed a marginally significant reduction in breeding success compared to sham-implanted individuals, with all failures occurring at least 1week after implant removal. However, prolactin concentrations at implant removal were not significantly different from initial values. We were unable to measure the profile of change in corticosterone during the experiment. However, our results suggest a delayed effect of elevated corticosterone on breeding success rather than an immediate suppression of prolactin concentrations causing premature failure.


Assuntos
Charadriiformes/fisiologia , Corticosterona/administração & dosagem , Reprodução/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Charadriiformes/sangue , Corticosterona/sangue , Feminino , Bombas de Infusão , Longevidade , Masculino , Comportamento de Nidação/efeitos dos fármacos , Prolactina/sangue , Prolactina/metabolismo , Reprodução/fisiologia , Fatores Sexuais
14.
Proc Natl Acad Sci U S A ; 109(5): 1743-8, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22232671

RESUMO

The attrition of telomeres, the ends of eukaryote chromosomes, is thought to play an important role in cell deterioration with advancing age. The observed variation in telomere length among individuals of the same age is therefore thought to be related to variation in potential longevity. Studies of this relationship are hampered by the time scale over which individuals need to be followed, particularly in long-lived species where lifespan variation is greatest. So far, data are based either on simple comparisons of telomere length among different age classes or on individuals whose telomere length is measured at most twice and whose subsequent survival is monitored for only a short proportion of the typical lifespan. Both approaches are subject to bias. Key studies, in which telomere length is tracked from early in life, and actual lifespan recorded, have been lacking. We measured telomere length in zebra finches (n = 99) from the nestling stage and at various points thereafter, and recorded their natural lifespan (which varied from less than 1 to almost 9 y). We found telomere length at 25 d to be a very strong predictor of realized lifespan (P < 0.001); those individuals living longest had relatively long telomeres at all points at which they were measured. Reproduction increased adult telomere loss, but this effect appeared transient and did not influence survival. Our results provide the strongest evidence available of the relationship between telomere length and lifespan and emphasize the importance of understanding factors that determine early life telomere length.


Assuntos
Tentilhões/genética , Expectativa de Vida , Telômero , Animais
15.
Proc Biol Sci ; 281(1782): 20133151, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24648221

RESUMO

Exposure to stressors early in life is associated with faster ageing and reduced longevity. One important mechanism that could underlie these late life effects is increased telomere loss. Telomere length in early post-natal life is an important predictor of subsequent lifespan, but the factors underpinning its variability are poorly understood. Recent human studies have linked stress exposure to increased telomere loss. These studies have of necessity been non-experimental and are consequently subjected to several confounding factors; also, being based on leucocyte populations, where cell composition is variable and some telomere restoration can occur, the extent to which these effects extend beyond the immune system has been questioned. In this study, we experimentally manipulated stress exposure early in post-natal life in nestling European shags (Phalacrocorax aristotelis) in the wild and examined the effect on telomere length in erythrocytes. Our results show that greater stress exposure during early post-natal life increases telomere loss at this life-history stage, and that such an effect is not confined to immune cells. The delayed effects of increased telomere attrition in early life could therefore give rise to a 'time bomb' that reduces longevity in the absence of any obvious phenotypic consequences early in life.


Assuntos
Envelhecimento/genética , Aves/genética , Estresse Fisiológico/genética , Encurtamento do Telômero , Animais , Corticosterona/farmacologia , Eritrócitos , Longevidade
16.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220509, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310941

RESUMO

In many organisms, rapidly changing environmental conditions are inducing dramatic shifts in diverse phenotypic traits with consequences for fitness and population viability. However, the mechanisms that underlie these responses remain poorly understood. Endocrine signalling systems often influence suites of traits and are sensitive to changes in environmental conditions; they are thus ideal candidates for uncovering both plastic and evolved consequences of climate change. Here, we use body size and shape, a set of integrated traits predicted to shift in response to rising temperatures with effects on fitness, and insulin-like growth factor-1 as a case study to explore these ideas. We review what is known about changes in body size and shape in response to rising temperatures and then illustrate why endocrine signalling systems are likely to be critical in mediating these effects. Lastly, we discuss research approaches that will advance understanding of the processes that underlie rapid responses to climate change and the role endocrine systems will have. Knowledge of the mechanisms involved in phenotypic responses to climate change will be essential for predicting both the ecological and the long-term evolutionary consequences of a warming climate. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Assuntos
Evolução Biológica , Mudança Climática , Fenótipo , Temperatura , Tamanho Corporal
17.
Sci Rep ; 14(1): 11208, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755232

RESUMO

The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees, Osmia lignaria and Megachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in both O. lignaria and M. rotundata. Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. In O. lignaria, telomeres were longer in adults when they emerged following diapause. In M. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adult O. lignaria were exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics.


Assuntos
Telômero , Animais , Abelhas/genética , Abelhas/fisiologia , Telômero/genética , Telômero/metabolismo , Pupa/crescimento & desenvolvimento , Pupa/genética , Feminino , Masculino , Homeostase do Telômero , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Diapausa/genética
18.
Proc Biol Sci ; 279(1729): 709-14, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21849320

RESUMO

Stressful conditions early in life can give rise to exaggerated stress responses, which, while beneficial in the short term, chronically increase lifetime exposure to stress hormones and elevate disease risk later in life. Using zebra finches Taeniopygia guttata, we show here that individuals whose glucocorticoid stress hormones were experimentally increased for only a brief period in early post-natal life, inducing increased stress sensitivity, had reduced adult lifespans. Remarkably, the breeding partners of such exposed individuals also died at a younger age. This negative effect on partner longevity was the same for both sexes; it occurred irrespective of the partner's own early stress exposure and was in addition to any longevity reduction arising from this. Furthermore, this partner effect continued even after the breeding partnership was terminated. Only 5 per cent of control birds with control partners had died after 3 years, compared with over 40 per cent in early stress-early stress pairs. In contrast, reproductive capability appeared unaffected by the early stress treatment, even when breeding in stressful environmental circumstances. Our results clearly show that increased exposure to glucocorticoids early in life can markedly reduce adult life expectancy, and that pairing with such exposed partners carries an additional and substantial lifespan penalty.


Assuntos
Tentilhões/fisiologia , Longevidade , Estresse Fisiológico , Animais , Glucocorticoides/sangue , Preferência de Acasalamento Animal
19.
Conserv Physiol ; 9(1): coab052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257995

RESUMO

Prolonged or repeated episodes of environmental stress could be especially detrimental for developing young, via impaired growth or development. Despite this, most studies investigating the effects of human recreational and tourism activities have focused on adults. An increasing demand for nature-based tourism in remote locations means that many seabirds, which have evolved largely in the absence of predators and humans, are being exposed to novel pressures. The slow-growing semi-precocial nestlings of the European storm petrel Hydrobates pelagicus experience higher mortality rates in nests exposed to human recreational disturbance. Here, we examine whether surviving nestlings reared in disturbed areas are also affected via changes in growth trajectories and baseline circulating glucocorticoids. Nestlings reared in high-disturbance areas displayed delayed mass growth, and we found weak evidence for slower rates of mass gain and tarsus growth, compared with nestlings reared in undisturbed areas. There were no differences in wing growth, consistent with prioritization of long wings, important for post-fledging survival. A tendency for a less marked age-related decline in corticosterone (CORT) in disturbed nestlings offers limited evidence that changes in growth trajectories were mediated by baseline CORT. However, disturbed nestlings could have experienced overall higher GC exposure if the acute GC response was elevated. 'Catch-up' growth enabled high-disturbance nestlings to overcome early constraints and achieve a similar, or even larger, asymptotic body size and mass as low-disturbance nestlings. While catch-up growth has been shown to carry costs for parents and offspring, the effects of disturbance were slight and considerably smaller than growth alterations driven by variation in environmental conditions between years. Nonetheless, effects of human recreational activities could be exacerbated under higher levels of human disturbance or in the presence of multiple pressures, as imposed by present rapid rates of environmental change.

20.
Sci Rep ; 11(1): 9065, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907285

RESUMO

Although the pace of senescence varies considerably, the physiological systems that contribute to different patterns of senescence are not well understood, especially in long-lived vertebrates. Long-lived bony fish (i.e., Class Osteichthyes) are a particularly useful model for studies of senescence because they can readily be aged and exhibit some of the longest lifespans among vertebrates. In this study we examined the potential relationship between age and multiple physiological systems including: stress levels, immune function, and telomere length in individuals ranging in age from 2 to 99 years old in bigmouth buffalo (Ictiobus cyprinellus), the oldest known freshwater teleost fish. Contrary to expectation, we did not find any evidence for age-related declines in these physiological systems. Instead, older fish appeared to be less stressed and had greater immunity than younger fish, suggesting age-related improvements rather than declines in these systems. There was no significant effect of age on telomeres, but individuals that may be more stressed had shorter telomeres. Taken together, these findings suggest that bigmouth buffalo exhibit negligible senescence in multiple physiological systems despite living for nearly a century.


Assuntos
Cipriniformes/fisiologia , Longevidade , Encurtamento do Telômero , Telômero , Animais , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA