Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 18(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727001

RESUMO

The global demand for dietary proteins and protein-derived products are projected to dramatically increase which cannot be met using traditional protein sources. Seafood processing by-products (SPBs) and microalgae are promising resources that can fill the demand gap for proteins and protein derivatives. Globally, 32 million tonnes of SPBs are estimated to be produced annually which represents an inexpensive resource for protein recovery while technical advantages in microalgal biomass production would yield secure protein supplies with minimal competition for arable land and freshwater resources. Moreover, these biomaterials are a rich source of proteins with high nutritional quality while protein hydrolysates and biopeptides derived from these marine proteins possess several useful bioactivities for commercial applications in multiple industries. Efficient utilisation of these marine biomaterials for protein recovery would not only supplement global demand and save natural bioresources but would also successfully address the financial and environmental burdens of biowaste, paving the way for greener production and a circular economy. This comprehensive review analyses the potential of using SPBs and microalgae for protein recovery and production critically assessing the feasibility of current and emerging technologies used for the process development. Nutritional quality, functionalities, and bioactivities of the extracted proteins and derived products together with their potential applications for commercial product development are also systematically summarised and discussed.


Assuntos
Proteínas Alimentares/metabolismo , Suplementos Nutricionais , Resíduos Industriais , Microalgas/metabolismo , Proteínas/uso terapêutico , Alimentos Marinhos , Animais , Proteínas Alimentares/química , Proteínas Alimentares/isolamento & purificação , Manipulação de Alimentos , Humanos , Valor Nutritivo , Proteínas/química , Proteínas/isolamento & purificação
2.
Apoptosis ; 23(2): 93-112, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29322476

RESUMO

Cancer is a primary cause of human fatality and conventional cancer therapies, e.g., chemotherapy, are often associated with adverse side-effects, tumor drug-resistance, and recurrence. Molecularly targeted therapy, composed of small-molecule inhibitors and immunotherapy (e.g., monoclonal antibody and cancer vaccines), is a less harmful alternative being more effective against cancer cells whilst preserving healthy tissues. Drug-resistance, however, caused by negative regulation of cell death signaling pathways, is still a challenge. Circumvention of negative regulators of cell death pathways or development of predictive and response biomarkers is, therefore, quintessential. This review critically discusses the current state of knowledge on targeting negative regulators of cell death signaling pathways including apoptosis, ferroptosis, necroptosis, autophagy, and anoikis and evaluates the recent advances in clinical and preclinical research on biomarkers of negative regulators. It aims to provide a comprehensive platform for designing efficacious polytherapies including novel agents for restoring cell death signaling pathways or targeting alternative resistance pathways to improve the chances for antitumor responses. Overall, it is concluded that nonapoptotic cell death pathways are a potential research arena for drug discovery, development of novel biomarkers and targeted therapies.


Assuntos
Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Exp Cell Res ; 359(1): 20-29, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28803068

RESUMO

Human interferon gamma (hIFNγ) affects tumour cells and modulates immune responses, showing promise as an anti-cancer biotherapeutic. This study investigated the effect of glycosylation and expression system of recombinant hIFNγ in ovarian carcinoma cell lines, PEO1 and SKOV3. The efficacy of E. coli- and mammalian-expressed hIFNγ (hIFNγ-CHO and HEK293, glycosylated/de-glycosylated) on cytostasis, cell death (MTT, and Guava-ViaCount® flow-cytometry) and apoptotic signalling (Western blot of Cdk2, histone H3, procaspase-3, FADD, cleaved PARP, and caspase-3) was examined. Hydrophilic Interaction Liquid Chromatography determined the structure of N-linked glycans present in HEK293-expressed hIFNγ (hIFNγ-HEK). PEO1 was more sensitive to hIFNγ than SKOV3, but responses were dose-dependent and expression platform/glycosylation status-independent, whereas SKOV3 responded to mammalian-expressed hIFNγ in a dose-independent manner, only. Complex-type oligosaccharides dominated the N-glycosylation pattern of hIFNγ-HEK with some terminal sialylation and core fucosylation. Cleaved PARP and cleaved caspase-3 were not detected in either cell line, but FADD was expressed in SKOV3 with levels increased following treatment. In conclusion, hIFNγ did not induce apoptosis in either cell line. Mammalian- expressed hIFNγ increased cell death in the drug-resistant SKOV3. The presence of FADD in SKOV3, which may inhibit apoptosis through activation of NF-κB, could serve as a novel therapeutic target.


Assuntos
Interferon gama/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Western Blotting , Linhagem Celular Tumoral , Feminino , Glicosilação , Células HEK293 , Humanos , Interferon gama/farmacologia , Neoplasias Ovarianas/patologia , Polissacarídeos/metabolismo , Proteínas Recombinantes/farmacologia , Resultado do Tratamento
4.
Biologicals ; 45: 52-60, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27810255

RESUMO

Human interferon gamma (hIFNγ) is an important cytokine in the innate and adaptive immune system, produced commercially in Escherichia coli. Efficient expression of hIFNγ has been reported once for Pichia pastoris (Wang et al., 2014) - a proven heterologous expression system. This study investigated hIFNγ expression in P. pastoris replicating the previous study and expanding by using four different strains (X33: wild type; GS115: HIS-Mut+; KM71H: Arg+, Mut- and CBS7435: MutS) and three different vectors (pPICZαA, pPIC9 and pPpT4αS). In addition, the native sequence (NS) and two codon-optimised sequences (COS1 and COS2) for P. pastoris were used. Methanol induction yielded no expression/secretion of hIFNγ in X33, highest levels were recorded for CBS7435: MutS (∼16 µg. L-1). mRNA copy number calculations acquired from RT-qPCR for GS115-pPIC9-COS1 proved low abundance of mRNA. A 10-fold increase in expression of hIFNγ was achieved by lowering the minimal free energy of the mRNA and 100-fold by MutS phenotypes, substantially lower than reported by Wang et al. (2014). We conclude that commercial production of low cost, eukaryotic recombinant hIFNγ is not an economically viable in P. pastoris. Further research is required to unravel the cause of low expression in P. pastoris to achieve economic viability.


Assuntos
Interferon gama/biossíntese , Pichia/metabolismo , Humanos , Interferon gama/genética , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
5.
J Environ Manage ; 197: 159-166, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28365562

RESUMO

Methane mitigation in landfill top cover soils is mediated by methanotrophs whose optimal methane (CH4) oxidation capacity is governed by environmental and complex microbial community interactions. Optimization of CH4 remediating bio-filters need to take microbial responses into account. Divalent copper (Cu2+) and iron (Fe2+) are present in landfills at variable ratios and play a vital role in methane oxidation capacity and growth of methanotrophs. This study, as a first of its kind, therefore quantified effects of variable Cu2+ and Fe2+ (5:5, 5:25 and 5:50 µM) ratios on mixed methanotrophic communities enriched from landfill top cover (LB) and compost soils (CB). CH4 oxidation capacity, CH4 removal efficiencies, fatty acids content/profiles and polyhydroxybutyrate (PHB; a biopolymer) contents were also analysed to quantify performance and potential co-product development. Mixed methanotroph cultures were raised in 10 L continuous stirred tank reactors (CSTRs, Bioflo® & Celligen® 310 Fermentor/Bioreactor; John Morris Scientific, Chatswood, NSW, Australia). Community structure was determined by amplifying the V3-V4 region of 16s rRNA gene. Community structure and, consequently, fatty acid-profiles changed significantly with increasing Cu2+/Fe2+ ratios, and responses were different for LB and CB. Effects on methane oxidation capacities and PHB content were similar in the LB- and CB-CSTR, decreasing with increasing Cu2+/Fe2+ ratios, while biomass growth was unaffected. In general, high Fe2+ concentration favored growth of the type -II methanotroph Methylosinus in the CB-CSTR, but methanotroph abundances decreased in the LB-CSTR. Increase in Cu2+/Fe2+ ratio increased the growth of Sphingopyxis in both systems, while Azospirllum was co-dominant in the LB- but absent in the CB-CSTR. After 13 days, methane oxidation capacities and PHB content decreased by ∼50% and more in response to increasing Fe2+ concentrations. Although methanotroph abundance was ∼2% in the LB- (compared to >50% in CB-CSTR), methane oxidation capacities were comparable in the two systems, suggesting that methane oxidation capacity was maintained by the dominant Azospirllum and Sphingopyxis in the LB-CSTR. Despite similar methanotroph inoculum community composition and controlled environmental variables, increasing Cu2+/Fe2+ ratios resulted in significantly different microbial community structures in the LB- and CB-CSTR, indicative of complex microbial interactions. In summary, our results suggest that a detailed understanding of allelopathic interactions in mixed methanotrophic consortia is vital for constructing robust bio-filters for CH4 emission abatement.


Assuntos
Metano , Instalações de Eliminação de Resíduos , Austrália , Oxirredução , RNA Ribossômico 16S , Microbiologia do Solo
6.
J Antimicrob Chemother ; 71(6): 1547-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26945708

RESUMO

OBJECTIVES: The objectives of this study were to: (i) determine the in vitro activities of a series of di-, tri- and tetra-nuclear ruthenium complexes (Rubbn, Rubbn-tri and Rubbn-tetra) against a range of Gram-positive and -negative bacteria and compare the antimicrobial activities with the corresponding toxicities against eukaryotic cells; and (ii) compare MIC values with achievable in vivo serum concentrations for the least toxic ruthenium complex. METHODS: The in vitro activities were determined by MIC assays and time-kill curve experiments, while the toxicities of the ruthenium complexes were determined using the Alamar blue cytotoxicity assay. A preliminary pharmacokinetic study was undertaken to determine the Rubb12 serum concentration in mice as a function of time after administration. RESULTS: Rubb12, Rubb12-tri and Rubb12-tetra are highly active, with MIC values of 1-2 mg/L (0.5-1.5 µM) for a range of Gram-positive strains, but showed variable activities against a panel of Gram-negative bacteria. Time-kill experiments indicated that Rubb12, Rubb12-tri and Rubb12-tetra are bactericidal and kill bacteria within 3-8 h. The di-, tri- and tetra-nuclear complexes were ∼50 times more toxic to Gram-positive bacteria and 25 times more toxic to Gram-negative strains, classified as susceptible, than to liver and kidney cells. Preliminary pharmacokinetic experiments established that serum concentrations higher than MIC values can be obtained for Rubb12 with an administered dose of 32 mg/kg. CONCLUSIONS: The ruthenium complexes, particularly Rubb12, have potential as new antimicrobial agents. The structure of the dinuclear ruthenium complex can be readily further modified in order to increase the selectivity for bacteria over eukaryotic cells.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Células Eucarióticas/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Rutênio/farmacologia , Animais , Antibacterianos/farmacocinética , Antibacterianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Colorimetria/métodos , Feminino , Masculino , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Compostos Organometálicos/farmacocinética , Compostos Organometálicos/toxicidade , Oxazinas/análise , Rutênio/farmacocinética , Rutênio/toxicidade , Soro/química , Xantenos/análise
7.
J Theor Biol ; 404: 1-9, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27216639

RESUMO

Ecologists have often used indirect proxies to represent variables that are difficult or impossible to measure directly. In phytoplankton, the internal concentration of the most limiting nutrient in a cell determines its growth rate. However, directly measuring the concentration of nutrients within cells is inaccurate, expensive, destructive, and time-consuming, substantially impairing our ability to model growth rates in nutrient-limited phytoplankton populations. The red chlorophyll autofluorescence (hereafter "red fluorescence") signal emitted by a cell is highly correlated with nitrogen quota in nitrogen-limited phytoplankton species. The aim of this study was to evaluate the reliability of including flow cytometric red fluorescence as a proxy for internal nitrogen status to model phytoplankton growth rates. To this end, we used the classic Quota model and designed three approaches to calibrate its model parameters to data: where empirical observations on cell internal nitrogen quota were used to fit the model ("Nitrogen-Quota approach"), where quota dynamics were inferred only from changes in medium nutrient depletion and population density ("Virtual-Quota approach"), or where red fluorescence emission of a cell was used as an indirect proxy for its internal nitrogen quota ("Fluorescence-Quota approach"). Two separate analyses were carried out. In the first analysis, stochastic model simulations were parameterized from published empirical relationships and used to generate dynamics of phytoplankton communities reared under nitrogen-limited conditions. Quota models were fitted to the dynamics of each simulated species with the three different approaches and the performance of each model was compared. In the second analysis, we fit Quota models to laboratory time-series and we calculate the ability of each calibration approach to describe the observed trajectories of internal nitrogen quota in the culture. Results from both analyses concluded that the Fluorescence-Quota approach including per-cell red fluorescence as a proxy of internal nitrogen substantially improved the ability of Quota models to describe phytoplankton dynamics, while still accounting for the biologically important process of cell nitrogen storage. More broadly, many population models in ecology implicitly recognize the importance of accounting for storage mechanisms to describe the dynamics of individual organisms. Hence, the approach documented here with phytoplankton dynamics may also be useful for evaluating the potential of indirect proxies in other ecological systems.


Assuntos
Modelos Biológicos , Nitrogênio/metabolismo , Fitoplâncton/metabolismo , Simulação por Computador , Fatores de Tempo
8.
Biotechnol Bioeng ; 112(3): 621-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25219374

RESUMO

WAVE™ rocking disposable bioreactors have been successfully utilized for bioproduct development from bacteria, yeast, microalgae, and animal and plant cells but not from cyanobacteria so far. N2 -fixing cyanobacteria represent a prolific bioproducts source with reduced cultivation costs. In this study, 1 L cultures of the N2 -fixing cyanobacterium Anabaena siamensis grown diazotrophically in the WAVE™ bioreactor exhibited increased phosphate consumption and 37-70% higher CO2 fixation rates than those grown in conventional bubbled suspension (BS) batch cultures. This generated 40-80% increased biomass productivities in the WAVE™ bioreactor reaching 60 mg L(-1) day(-1) when supplemented with 10% CO2 . Consequently, WAVE™ generated 36-153% more protein, lipid, and carbohydrate than BS, including 47-100% increased productivity of phycocyanin and stearidonic acid (SA) with relevant biomedical applications. While the type of culture system (BS or WAVE(TM) ) did not affect the biochemical profile of cyanobacterial biomass, 10% CO2 supplementation induced a significant decrease in fatty acids and phycocyanin contents (mg g(-1) DW). Therefore, for commercial applications, the CO2 supplementation of WAVE™ should be optimized for each targeted bioproduct separately. This study opens possibilities for upgrading the WAVE™ systems to photobioreactors (PBRs) for bioproduct development from cyanobacteria, with opportunities and challenges critically evaluated herein.


Assuntos
Biotecnologia/instrumentação , Cianobactérias/metabolismo , Fotobiorreatores/microbiologia , Biomassa , Meios de Cultura , Cianobactérias/química , Cianobactérias/fisiologia , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Ficocianina/análise , Ficocianina/metabolismo
9.
Nature ; 451(7181): 959-63, 2008 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-18288187

RESUMO

Many parasitic Apicomplexa, such as Plasmodium falciparum, contain an unpigmented chloroplast remnant termed the apicoplast, which is a target for malaria treatment. However, no close relative of apicomplexans with a functional photosynthetic plastid has yet been described. Here we describe a newly cultured organism that has ultrastructural features typical for alveolates, is phylogenetically related to apicomplexans, and contains a photosynthetic plastid. The plastid is surrounded by four membranes, is pigmented by chlorophyll a, and uses the codon UGA to encode tryptophan in the psbA gene. This genetic feature has been found only in coccidian apicoplasts and various mitochondria. The UGA-Trp codon and phylogenies of plastid and nuclear ribosomal RNA genes indicate that the organism is the closest known photosynthetic relative to apicomplexan parasites and that its plastid shares an origin with the apicoplasts. The discovery of this organism provides a powerful model with which to study the evolution of parasitism in Apicomplexa.


Assuntos
Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Parasitos/classificação , Parasitos/citologia , Fotossíntese , Filogenia , Plastídeos/metabolismo , Animais , Núcleo Celular/genética , Clorofila/metabolismo , Clorofila A , Códon/genética , Células Eucarióticas/citologia , Células Eucarióticas/ultraestrutura , Parasitos/genética , Parasitos/ultraestrutura , Plasmodium falciparum/classificação , Plastídeos/genética , RNA Ribossômico/genética
10.
Nutrients ; 16(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39339823

RESUMO

Undernutrition is an important global health problem, especially in children and older adults. Both reversal of maternal and child undernutrition and heathy ageing have become United Nations-supported global initiatives, leading to increased attention to nutritional interventions targeting undernutrition. One feasible option is microalgae, the precursor of all terrestrial plants. Most commercially farmed microalgae are photosynthetic single-celled organisms producing organic carbon compounds and oxygen. This review will discuss commercial opportunities to grow microalgae. Microalgae produce lipids (including omega-3 fatty acids), proteins, carbohydrates, pigments and micronutrients and so can provide a suitable and underutilised alternative for addressing undernutrition. The health benefits of nutrients derived from microalgae have been identified, and thus they are suitable candidates for addressing nutritional issues globally. This review will discuss the potential benefits of microalgae-derived nutrients and opportunities for microalgae to be converted into food products. The advantages of microalgae cultivation include that it does not need arable land or pesticides. Additionally, most species of microalgae are still unexplored, presenting options for further development. Further, the usefulness of microalgae for other purposes such as bioremediation and biofuels will increase the knowledge of these microorganisms, allowing the development of more efficient production of these microalgae as nutritional interventions.


Assuntos
Desnutrição , Microalgas , Humanos , Desnutrição/prevenção & controle , Valor Nutritivo , Micronutrientes
11.
Crit Rev Biotechnol ; 33(1): 49-65, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22524446

RESUMO

Lipids from microalgae have become an important commodity in the last 20 years, biodiesel and supplementing human diets with ω-3 fatty acids are just two of the many applications. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the lipid synthesis pathway. In general, ACCases consist of four functional domains: the biotin carboxylase (BC), the biotin carboxyl binding protein (BCCP), and α-and ß-carboxyltransferases (α-and ß-CT). In algae, like in plants, lipid synthesis is another function of the chloroplast. Despite being well researched in plants and animals, there is a distinct lack of information about this enzyme in the taxonomically diverse algae. In plastid-containing organisms, ACCases are present in the cytosol and the plastid (chloroplasts) and two different forms exist, the heteromeric (prokaryotic) and homomeric (eukaryotic) form. Despite recognition of the existence of the two ACCase forms, generalized published statements still list the heteromeric form as the one present in algal plastids. In this study, the authors show this is not the case for all algae. The presence of heteromeric or homomeric ACCase is dependent on the origin of plastid. The authors used ACCase amino acid sequence comparisons to show that green (Chlorophyta) and red (Rhodophyta) algae, with the exception of the green algal class Prasinophyceae, contain heteromeric ACCase in their plastids, which are of primary symbiotic origin and surrounded by two envelope membranes. In contrast, algal plastids surrounded by three to four membranes were derived through secondary endosymbiosis (Heterokontophyta and Haptophyta), as well as apicoplast containing Apicomplexa, contain homomeric ACCase in their plastids. Distinctive differences in the substrate binding regions of heteromeric and homomeric α-CT and ß-CT were discovered, which can be used to distinguish between the two ACCase types. Furthermore, the acetyl-CoA binding region of homomeric α-CT can be used to distinguish between cytosolic and plastidial ACCase. The information provided here will be of fundamental importance in ACCase expression and activity research to unravel impacts of environmental and physicochemical parameters on lipid content and productivity.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Clorófitas/enzimologia , Lipídeos/biossíntese , Proteínas de Plantas/metabolismo , Rodófitas/enzimologia , Sequência de Aminoácidos , Microalgas/enzimologia , Dados de Sequência Molecular , Simbiose
12.
Ther Adv Drug Saf ; 13: 20420986221107753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898799

RESUMO

Could natural plant pigment (chlorophyll) derivatives (chlorophyllins) improve the safety of the antiviral Molnupiravir, used to treat COVID-19 disease? Molnupiravir, a specific SARS-CoV-2 antiviral, may cause adverse genetic changes and thereby create potential host cell damage (through genotoxicity and DNA stressors). In our opinion, this side effect of treatment could be reduced if the antiviral was taken as a combined therapy with chlorophyllins. Specifically, we hypothesise that chlorophyllins might improve the overall effectiveness of molnupiravir, typically used to treat patients suffering from COVID-19. Chlorophyllins, antioxidants derived from natural plant chlorophyll, are safe, effective and non-toxic antioxidants that could combat possible genotoxic flow-on effects of molnupiravir. In addition, as they possess antiviral properties, treatment with chlorophyllins may enhance the overall antiviral effect via a mechanism different to molnupiravir.

13.
Chemosphere ; 283: 131246, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470734

RESUMO

Tolypothrix, a self-flocculating, fast growing, CO2 and nitrogen-fixing cyanobacterium, can be cultivated in nutrient-poor ash dam waters of coal-fired power stations, converting CO2 emissions into organic biomass. Therefore, the biomass of Tolypothrix sp. is a promising source for bio-fertiliser production, providing micro- and macronutrients. Energy requirements for production could potentially be offset via anaerobic digestion (AD) of the produced biomass, which may further improve the efficiency of the resulting biofertilizer. The aim of this study was to evaluate the effectiveness of pre-treatment conditions and subsequent methane (CH4) production of Tolypothrix under out-door cultivation conditions. Pre-treatments on biogas and methane production for Tolypothrix sp. biomass investigated were: (1) thermal at 95 °C for 10 h, (2) hydrothermal by autoclave at 121 °C at 1013.25 hPa for 20 min, using a standard moisture-heat procedure, (3) microwave at an output power of 900 W and an exposure time of 3 min, (4) sonication at an output power of 10 W for 3.5 h at 10 min intervals with 20 s breaks and (5) freeze-thaw cycles at -80 °C for 24 h followed by thawing at room temperature. Thermal, hydrothermal and sonication pre-treatments supported high solubilization of organic compounds up to 24.40 g L-1. However, higher specific CH4 production of 0.012 and 0.01 L CH4 g-1 volatile solidsadded. was achieved for thermal and sonic pre-treatments, respectively. High N- and low C-content of the Tolypothrix biomass affected CH4 recovery, while pre-treatment accelerated production of volatile acids (15.90 g L-1) and ammonia-N-accumulation (1.41 g L-1), leading to poor CH4 yields. Calculated theoretical CH4 yields based on the elemental composition of the biomass were ~55% higher than actual yields. This highlights the complexity of interactions during AD which are not adequately represented by elemental composition.


Assuntos
Cianobactérias , Metano , Anaerobiose , Biocombustíveis , Biomassa
14.
Biotechnol Bioeng ; 107(2): 245-57, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20506156

RESUMO

Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9-4.8 g m(-2) day(-1) in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1-45.0 g m(-2) day(-1)) exceeded that of the other species by a factor 2-10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems.


Assuntos
Biomassa , Eucariotos/crescimento & desenvolvimento , Eucariotos/metabolismo , Lipídeos/análise , Reatores Biológicos/microbiologia , Meios de Cultura/química , Eucariotos/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-32117931

RESUMO

Rising CO2 levels, associated climatic instability, freshwater scarcity and diminishing arable land exacerbate the challenge to maintain food security for the fast growing human population. Although coal-fired power plants generate large amounts of CO2 emissions and wastewater, containing environmentally unsafe concentrations of metals, they ensure energy security. Nitrogen (N2)-fixation by cyanobacteria eliminate nitrogen fertilization costs, making them promising candidates for remediation of waste CO2 and metals from macronutrient-poor ash dam water and the biomass is suitable for phycocyanin and biofertilizer product development. Here, the effects of CO2 and metal mixtures on growth, bioproduct and metal removal potential were investigated for the self-flocculating, N2-fixing freshwater cyanobacterium Tolypothrix sp. Tolypothrix sp. was grown outdoors in simulated ash dam wastewater (SADW) in 500 L vertical bag suspension cultures and as biofilms in modified algal-turf scrubbers. The cultivation systems were aerated with air containing either 15% CO2 (v/v) or not. CO2-fertilization resulted in ∼1.25- and 1.45-fold higher biomass productivities and ∼40 and 27% increased phycocyanin and phycoerythrin contents for biofilm and suspension cultures, respectively. CO2 had no effect on removal of Al, As, Cu, Fe, Sr, and Zn, while Mo removal increased by 37% in both systems. In contrast, Ni removal was reduced in biofilm systems, while Se removal increased by 73% in suspension cultures. Based on biomass yields and biochemical data obtained, net present value (NPV) and sensitivities analyses used four bioproduct scenarios: (1) phycocyanin sole product, (2) biofertilizer sole product, (3) 50% phycocyanin and 50% biofertilizer, and (4) 100% phycocyanin and 100% biofertilizer (residual biomass) for power station co-located and not co-located 10 ha facilities over a 20-year period. Economic feasibility for the production of food-grade phycocyanin either as a sole product or with co-production of biofertilizer was demonstrated for CO2-enriched vertical and raceway suspension cultures raised without nitrogen-fertilization and co-location with power stations significantly increased profit margins.

16.
Food Chem ; 314: 126211, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982856

RESUMO

Hot water pretreatment of sea cucumbers potentially changes nutritional benefits. This study aimed to quantify hot water pretreatment-induced changes in metabolite profiles of sea cucumber body walls. ICP-OES, GC-MS, and LC-MS analyses of untreated- (UT-BW), hot water-treated body walls (HW-BW) of Apostichopus japonicus, and the hot water extract (HW-E) determined significant losses of minerals (25-50% w/w), protein (~11% w/w), carbohydrate (33% w/w), saponins (~41% w/w), and spermidine (100%), a potential antipsychotic from hot water-treated samples. Multivariate comparisons of HW-BW with UT-BW and HW-BW with HW-E showed increases in amino acids and fatty acids, suggesting hot water-induced degradation or transformation or easier extraction of protein, lipid or other components. Presence of 80 to 88.5% of compounds in the HW-E and lower DHA, EPA and glycerophospholipids levels in HW-BW suggested extraction of these metabolites. These data indicate that novel processing technologies are required to preserve the full nutritional benefits of sea cucumbers.


Assuntos
Stichopus/metabolismo , Animais , Cromatografia Líquida , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Temperatura Alta , Espectrometria de Massas , Minerais/química , Minerais/metabolismo , Stichopus/química , Água
17.
Heliyon ; 5(4): e01549, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183423

RESUMO

Continued economic growth is reliant on stable, affordable energy, requiring at present fossil fuel-derived energy production. Coal-fired power stations produce metal-rich but macro-nutrient-poor waste waters and emit flue gas, containing ∼10% CO2. Algae and cyanobacteria remediate metals and CO2, but use of N2-fixing (diazotrophic) cyanobacteria can reduce nitrogen-fertilization costs. The resulting biomass represents a promising source for biofuel and bio-product development. This study investigated the effect of CO2- and trace metals on growth performance, biochemical profiles and metal content of the freshwater diazotrophic cyanobacterium Tolypothrix sp. to assess bioproduct potential. Aerated 2 L batch cultures were grown in simulated ash-dam water (SADW) and BG11 without nitrogen (BG11(-N) controls). Supplied air was supplemented with either 15% CO2 or not (non-CO2 controls). CO2 supplementation resulted in 2.4 and 3.3-fold higher biomass productivities and 1.3 and 1.2-fold higher phycocyanin and phycoerythrin contents, whilst metals (media) had no effect. Al, Cu, Ni and V were more efficiently removed (50-90%) with CO2-addition, while As, Mo, Se and Sr removal was higher (30-87%) for non-CO2 controls. No significant effect on Zn and Fe removal was evident. Calculated biomass metal concentrations, at quantities required to meet N-requirements of wheat, suggests no metal toxicity when applied as a mineral-nitrogen biofertilizer. With a carbohydrate content of 50%, the biomass is also suitable for bioethanol production. In summary, Tolypothrix sp. raised in ash dam waste water supplemented with flue gas CO2 could yield high-value phycobiliproteins, bioethanol or biogas, and mineral-rich nitrogen fertilizer which would offset remediation costs and improve agricultural productivity.

18.
Bioresour Technol ; 273: 431-438, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30466021

RESUMO

Direct biodiesel production from wet fungal biomass may significantly reduce production costs, but there is a lack of fast and cost-effective processing technology. A novel thin film continuous flow process has been applied to study the effects of its operational parameters on fatty acid (FA) extraction and FA to fatty acid methyl ester (FAME) conversion efficiencies. Single factor experiments evaluated the effects of catalyst concentration and water content of biomass, while factorial experimental designs determined the interactions between catalyst concentration and biomass to methanol ratio, flow rate, and rotational speed. Direct transesterification (DT) of wet Mucor plumbeus biomass at ambient temperature and pressure achieved a FA to FAME conversion efficiency of >90% using 3 wt/v % NaOH concentration, if the water content was ≤50% (w/w). In comparison to existing DT methods, this continuous flow processing technology has an estimated 90-94% reduction in energy consumption, showing promise for up-scaling.


Assuntos
Biomassa , Biocombustíveis , Catálise , Esterificação , Ácidos Graxos/química , Metanol/metabolismo
19.
Mar Pollut Bull ; 56(9): 1545-52, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18632118

RESUMO

Pulse amplitude modulation (PAM) fluorometry is ideally suited to measure the sub-lethal impacts of photosystem II (PSII)-inhibiting herbicides on microalgae, but key relationships between effective quantum yield [Y(II)] and the traditional endpoints growth rate (micro) and biomass increase are unknown. The effects of three PSII-inhibiting herbicides; diuron, hexazinone and atrazine, were examined on two tropical benthic microalgae; Navicula sp. (Heterokontophyta) and Nephroselmis pyriformis (Chlorophyta). The relationships between Y(II), micro and biomass increase were consistent (r2 > or =0.90) and linear (1:1), validating the utility of PAM fluorometry as a rapid and reliable technique to measure sub-lethal toxicity thresholds of PSII-inhibiting herbicides in these microalgae. The order of toxicity (EC50 range) was: diuron (16-33 nM) > hexazinone (25-110 nM) > atrazine (130-620 nm) for both algal species. Growth rate and photosynthesis were affected at diuron concentrations that have been detected in coastal areas of the Great Barrier Reef.


Assuntos
Eucariotos/efeitos dos fármacos , Eucariotos/crescimento & desenvolvimento , Herbicidas/toxicidade , Fotossíntese/efeitos dos fármacos , Análise de Variância , Atrazina/toxicidade , Biomassa , Diurona/toxicidade , Fluorometria , Triazinas/toxicidade
20.
Mar Pollut Bull ; 56(6): 1049-56, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18439628

RESUMO

The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.


Assuntos
Carbono/química , Ecossistema , Fertilizantes/análise , Ureia/química , Ureia/farmacologia , Efeito Estufa , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA