Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2006): 20231224, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670585

RESUMO

Sexually dimorphic behaviours, such as parental care, have long been thought to be mainly driven by gonadal hormones. In the past two decades, a few studies have challenged this view, highlighting the direct influence of the sex chromosome complement (XX versus XY or ZZ versus ZW). The African pygmy mouse, Mus minutoides, is a wild mouse species with naturally occurring XY sex reversal induced by a third, feminizing X* chromosome, leading to three female genotypes: XX, XX* and X*Y. Here, we show that sex reversal in X*Y females shapes a divergent maternal care strategy (maternal aggression, pup retrieval and nesting behaviours) from both XX and XX* females. Although neuroanatomical investigations were inconclusive, we show that the dopaminergic system in the anteroventral periventricular nucleus of the hypothalamus is worth investigating further as it may support differences in pup retrieval behaviour between females. Combining behaviours and neurobiology in a rodent subject to natural selection, we evaluate potential candidates for the neural basis of maternal behaviours and strengthen the underestimated role of the sex chromosomes in shaping sex differences in brain and behaviours. All things considered, we further highlight the emergence of a third sexual phenotype, challenging the binary view of phenotypic sexes.


Assuntos
Comportamento Materno , Camundongos , Caracteres Sexuais , Sexo , Animais , Feminino , Masculino , Agressão , Encéfalo
2.
J Exp Zool A Ecol Integr Physiol ; 341(2): 130-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059664

RESUMO

In mammals, most sex differences in phenotype are controlled by gonadal hormones, but recent work on transgenic mice has shown that sex chromosomes can have a direct influence on sex-specific behaviors. In this study, we take advantage of the naturally occurring sex reversal in a mouse species, Mus minutoides, to investigate for the first time the relationship between sex chromosomes, hormones, and behaviors in a wild species. In this model, a feminizing variant of the X chromosome, named X*, produces three types of females with different sex chromosome complements (XX, XX*, and X*Y), associated with alternative behavioral phenotypes, while all males are XY. We thus compared the levels of three major circulating steroid hormones (testosterone, corticosterone, and estradiol) in the four sex genotypes to disentangle the influence of sex chromosomes and sex hormones on behavior. First, we did not find any difference in testosterone levels in the three female genotypes, although X*Y females are notoriously more aggressive. Second, in agreement with their lower anxiety-related behaviors, X*Y females and XY males display lower baseline corticosterone concentration than XX and XX* females. Instead of a direct hormonal influence, this result rather suggests that sex chromosomes may have an impact on the baseline corticosterone level, which in turn may influence behaviors. Third, estradiol concentrations do not explain the enhanced reproductive performance and maternal care behavior of the X*Y females compared to the XX and XX* females. Overall, this study highlights that most of the behaviors varying along with sex chromosome complement of this species are more likely driven by genetic factors rather than steroid hormone concentrations.


Assuntos
Corticosterona , Disgenesia Gonadal 46 XY , Cromossomo Y , Animais , Camundongos , Feminino , Masculino , Testosterona , Estradiol , Mamíferos
3.
iScience ; 27(6): 109876, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799572

RESUMO

Our understanding and management of reproductive health and related disorders such as infertility, menstrual irregularities, and pituitary disorders depend on understanding the intricate sex-specific mechanisms governing prolactin secretion. Using ex vivo experiments in acute slices, in parallel with in vivo calcium imaging (GRIN lens technology), we found that dopamine neurons inhibiting PRL secretion (TIDA), organize as functional networks both in and ex vivo. We defined an index of efficiency of networking (Ieff) using the duration of calcium events and the ability to form plastic economic networks. It determined TIDA neurons' ability to inhibit PRL secretion in vivo. Ieff variations in both sexes demonstrated TIDA neurons' adaptability to physiological changes. A variation in the number of active neurons contributing to the network explains the sexual dimorphism in basal [PRL]blood secretion patterns. These sex-specific differences in neuronal activity and network organization contribute to the understanding of hormone regulation.

4.
Evol Lett ; 3(2): 152-161, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31161047

RESUMO

The ability of the agent of plague, Yersinia pestis, to form a biofilm blocking the gut of the flea has been considered to be a key evolutionary step in maintaining flea-borne transmission. However, blockage decreases dramatically the life expectancy of fleas, challenging the adaptive nature of blockage. Here, we develop an epidemiological model of plague that accounts for its different transmission routes, as well as the within-host competition taking place between bacteria within the flea vector. We use this theoretical framework to identify the environmental conditions promoting the evolution of blockage. We also show that blockage is favored at the onset of an epidemic, and that the frequencies of bacterial strains exhibiting different strategies of blockage can fluctuate in seasonal environments. This analysis quantifies the contribution of different transmission routes in plague and makes testable predictions on the adaptive nature of blockage.

5.
Ecol Evol ; 9(14): 7985-7996, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31380066

RESUMO

Numerous studies have reported correlations between the heterozygosity of genetic markers and fitness. These heterozygosity-fitness correlations (HFCs) play a central role in evolutionary and conservation biology, yet their mechanistic basis remains open to debate. For example, fitness associations have been widely reported at both neutral and functional loci, yet few studies have directly compared the two, making it difficult to gauge the relative contributions of genome-wide inbreeding and specific functional genes to fitness. Here, we compared the effects of neutral and immune gene heterozygosity on death from bacterial infection in Antarctic fur seal (Arctocephalus gazella) pups. We specifically developed a panel of 13 microsatellites from expressed immune genes and genotyped these together with 48 neutral loci in 234 individuals, comprising 39 pups that were classified at necropsy as having most likely died of bacterial infection together with a five times larger matched sample of healthy surviving pups. Identity disequilibrium quantified from the neutral markers was positive and significant, indicative of variance in inbreeding within the study population. However, multilocus heterozygosity did not differ significantly between healthy and infected pups at either class of marker, and little evidence was found for fitness associations at individual loci. These results support a previous study of Antarctic fur seals that found no effects of heterozygosity at nine neutral microsatellites on neonatal survival and thereby help to refine our understanding of how HFCs vary across the life cycle. Given that nonsignificant HFCs are underreported in the literature, we also hope that our study will contribute toward a more balanced understanding of the wider importance of this phenomenon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA