Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Chemistry ; : e202401750, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877823

RESUMO

Trimethyl phosphate (TMP), an organophosphorus compound (OPC), is a promising fire-retardant candidate for lithium-ion battery (LIB) electrolytes to mitigate fire spread. This study aims to understand the mechanism of TMP unimolecular thermal decomposition to support the integration of a TMP chemical kinetic model into a LIB electrolyte surrogate model. Reactive intermediates and products of TMP thermal decomposition were experimentally detected using vacuum ultraviolet (VUV) synchrotron radiation and double imaging photoelectron photoion coincidence (i2PEPICO) spectroscopy. Phosphorus-containing intermediates such as PO, HPO and HPO2 were identified. Sampling effects could successfully be obviated thanks to photoion imaging, which also showed evidence for isomerization reactions upon wall collisions in the ionization chamber. Quantum chemical calculations performed for the unimolecular decomposition of TMP revealed for the first time that isomerization channels via hydrogen and methyl transfer (barrier heights of 65.9 and 72.6 kcal/mol, respectively) are the lowest-energy primary steps of TMP decomposition followed by CH3OH/CH3/CH2O or dimethyl ether (DME) production, respectively. We found an analogous DME production channel in the unimolecular decomposition of dimethyl methylphosphonate (DMMP), another important OPC fire-retardant additive with a similar molecular structure to TMP, which are not included in currently available chemical kinetic models.

2.
Phys Chem Chem Phys ; 26(26): 18256-18265, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904382

RESUMO

Alkynyl radicals and cations are crucial reactive intermediates in chemistry, but often evade direct detection. Herein, we report the direct observation of the phenylethynyl radical (C6H5CC˙) and its cation (C6H5CC+), which are two of the most reactive intermediates in organic chemistry. The radical is generated via pyrolysis of (bromoethynyl)benzene at temperatures above 1500 K and is characterized by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES). Photoionization of the phenylethynyl radical yields the phenylethynyl cation, which has never been synthesized due to its extreme electrophilicity. Vibrationally-resolved ms-TPES assisted by ab initio calculations unveiled the complex electronic structure of the phenylethynyl cation, which appears at an adiabatic ionization energy (AIE) of 8.90 ± 0.05 eV and exhibits an uncommon triplet (3B1) ground state, while the closed-shell singlet (1A1) state lies just 2.8 kcal mol-1 (0.12 eV) higher in energy. The reactive phenylethynyl radical abstracts hydrogen to form ethynylbenzene (C6H5CCH) but also isomerizes via H-shift to the o-, m-, and p-ethynylphenyl isomers (C6H4CCH). These radicals are very reactive and undergo ring-opening followed by H-loss to form a mixture of C8H4 triynes, along with low yields of cyclic 3- and 4-ethynylbenzynes (C6H3CCH). At higher temperatures, dehydrogenation from the unbranched C8H4 triynes forms the linear tetraacetylene (C8H2), an astrochemically relevant polyyne.

3.
Angew Chem Int Ed Engl ; 63(17): e202401060, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38451557

RESUMO

C1 coupling reactions over zeolite catalysts are central to sustainable chemical production strategies. However, questions persist regarding the involvement of CO in ketene formation, and the impact of this elusive oxygenate intermediate on reactivity patterns. Using operando photoelectron photoion coincidence spectroscopy (PEPICO), we investigate the role of CO in methyl chloride conversion to hydrocarbons (MCTH), a prospective process for methane valorization with a reaction network akin to methanol to hydrocarbons (MTH) but without oxygenate intermediates. Our findings reveal the transformative role of CO in MCTH at the low pressures, inducing ketene formation in MCTH and boosting olefin production, confirming the Koch carbonylation step in the initial stages of C1 coupling. We uncover pressure-dependent product distributions driven by CO-induced ketene formation, and its subsequent desorption from the zeolite surface, which is enhanced at low pressure. Inspired by the above results, extension of the co-feeding approach to CH3OH as another simple oxygenate showcases the additional potential for improved catalyst stability in MCTH at ambient pressure.

4.
J Am Chem Soc ; 145(14): 7910-7917, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36867720

RESUMO

Oxidative dehydrogenation of propane (ODHP) is an emerging technology to meet the global propylene demand with boron nitride (BN) catalysts likely to play a pivotal role. It is widely accepted that gas-phase chemistry plays a fundamental role in the BN-catalyzed ODHP. However, the mechanism remains elusive because short-lived intermediates are difficult to capture. We detect short-lived free radicals (CH3•, C3H5•) and reactive oxygenates, C2-4 ketenes and C2-3 enols, in ODHP over BN by operando synchrotron photoelectron photoion coincidence spectroscopy. In addition to a surface-catalyzed channel, we identify a gas-phase H-acceptor radical- and H-donor oxygenate-driven route, leading to olefin production. In this route, partially oxidized enols propagate into the gas phase, followed by dehydrogenation (and methylation) to form ketenes and finally yield olefins by decarbonylation. Quantum chemical calculations predict the >BO dangling site to be the source of free radicals in the process. More importantly, the easy desorption of oxygenates from the catalyst surface is key to prevent deep oxidation to CO2.

5.
J Am Chem Soc ; 145(28): 15443-15455, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37405391

RESUMO

Molecular beam experiments together with electronic structure calculations provide the first evidence of a complex network of elementary gas-phase reactions culminating in the bottom-up preparation of the 24π aromatic coronene (C24H12) molecule─a representative peri-fused polycyclic aromatic hydrocarbon (PAH) central to the complex chemistry of combustion systems and circumstellar envelopes of carbon stars. The gas-phase synthesis of coronene proceeds via aryl radical-mediated ring annulations through benzo[e]pyrene (C20H12) and benzo[ghi]perylene (C22H12) involving armchair-, zigzag-, and arm-zig-edged aromatic intermediates, highlighting the chemical diversity of molecular mass growth processes to polycyclic aromatic hydrocarbons. The isomer-selective identification of five- to six-ringed aromatics culminating with the detection of coronene is accomplished through photoionization and is based upon photoionization efficiency curves along with photoion mass-selected threshold photoelectron spectra, providing a versatile concept of molecular mass growth processes via aromatic and resonantly stabilized free radical intermediates to two-dimensional carbonaceous nanostructures.

6.
Chemistry ; 29(35): e202300637, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36994844

RESUMO

Methyl and methylene compounds of arsenic and antimony have been studied by photoelectron photoion coincidence spectroscopy to investigate their relative stability. While for As both HAs=CH2 , As-CH3 and the methylene compound As=CH2 are identified in the spectrum, the only Sb compound observed is Sb-CH3 . Thus, there is a step in the main group 15 between As and Sb, regarding the relative stability of the methyl compounds. Ionisation energies, vibrational frequencies and spin-orbit splittings were determined for the methyl compound from photoion mass-selected photoelectron spectra. Although the spectroscopic results for organoantimony resemble those for the previously investigated bismuth compounds, EPR spectroscopic experiments indicate a far lower tendency for methyl transfer for Sb(CH3 )3 compared to Bi(CH3 )3 . This study concludes investigations on low-valent organopnictogen compounds.


Assuntos
Antimônio , Arsênio , Espectroscopia Fotoeletrônica , Espectrometria de Massas , Antimônio/química
7.
Chemphyschem ; 24(16): e202300334, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37325876

RESUMO

The electronic structure of biradicals is characterized by the presence of two unpaired electrons in degenerate or near-degenerate molecular orbitals. In particular, some of the most relevant species are highly reactive, difficult to generate cleanly and can only be studied in the gas phase or in matrices. Unveiling their electronic structure is, however, of paramount interest to understand their chemistry. Photoelectron photoion coincidence (PEPICO) spectroscopy is an excellent approach to explore the electronic states of biradicals, because it enables a direct correlation between the detected ions and electrons. This permits to extract unique vibrationally resolved photoion mass-selected threshold photoelectron spectra (ms-TPES) to obtain insight in the electronic structure of both the neutral and the cation. In this review we highlight most recent advances on the spectroscopy of biradicals and biradicaloids, utilizing PEPICO spectroscopy and vacuum ultraviolet (VUV) synchrotron radiation.

8.
Chemphyschem ; 24(20): e202300359, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37465875

RESUMO

Understanding how isomerism influences photoelectron spectra helps in the assignment and analysis of reactive mixtures, especially for heterocycles with numerous isomers. Threshold photoelectron spectra of lutidyl radical isomers, i. e., benzyl derivatives with a nitrogen heteroatom and a methyl substituent, are recorded using vacuum ultraviolet synchrotron radiation. The radicals are produced by flash pyrolysis from aminomethyl methylpyridine precursors. Experimental ionization energies are determined to be 7.54, 7.50, and 7.45 eV for 2,4-, 2,6- and 3,5-lutidyl, respectively, in excellent agreement with composite method calculations. Franck-Condon simulations aid the TPES assignment but are also shown to exhibit artifacts if large-amplitude motions, notably the methyl internal rotation are assumed to be active in the double harmonic approximation. Based on calculated adiabatic ionization energies (AIE) of benzyl, picolyl, and xylyl radicals, the N and CH3 substituent effects are found to be additive, position-dependent and decrease in the para>ortho≳meta order in magnitude with the nitrogen heteroatom increasing and the methyl substituent decreasing the AIE. These effects are discussed in light of the charge distribution upon ionization. The additivity of the substituent effects also helps predict the influence of substituents on the binding energy of the unpaired electron in analogous radicals.

9.
Phys Chem Chem Phys ; 25(6): 4511-4518, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36445209

RESUMO

Trimethylborane (TMB) and its chemistry upon pyrolysis have been investigated by threshold photoelectron spectroscopy. TMB shows an unstructured spectrum and its adiabatic ionization energy (IEad) has been determined to be 9.93 ± 0.1 eV. Dissociative photoionization induces a methyl radical loss in TMB and the barrier to dissociation in the cation is measured to be 0.65 ± 0.1 eV. Upon pyrolysis methane loss dominates, leading to C2H5B, which can exist in five different isomeric structures. Quantum chemical calculations were used to investigate possible methane loss mechanisms as well as the isomerization pathways on the C2H5B potential energy surface. Through isomer-selective photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) the two isomers CH3BCH2 and CH3CHBH were identified by their ms-TPE spectra and IEad values of 8.55 ± 0.02 eV and 8.73 ± 0.02 eV were determined, respectively. A second channel leading to the loss of ethene from TMB forms CH2BH, which exhibits an IEad value of 9.37 ± 0.03 eV. The reaction mechanism in the literature needs to be expanded by an additional methane loss from the intermediately formed ethyl methyl borane.

10.
Phys Chem Chem Phys ; 25(42): 29070-29079, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37861750

RESUMO

The threshold photoionization and dissociative ionization of benzonitrile (C6H5CN) were studied using double imaging photoelectron photoion coincidence (i2PEPICO) spectroscopy at the Vacuum Ultraviolet (VUV) beamline of the Swiss Light Source (SLS). The threshold photoelectron spectrum was recorded from 9.6 to 12.7 eV and Franck-Condon simulations of ionization into the ionic ground state, X̃+, as well as the B̃+ and C̃+ states were performed to assign the observed vibronic structures. The adiabatic ionization energies of the X̃+, B̃+ and C̃+ states are determined to be (9.72 ± 0.02), (11.85 ± 0.03) and, tentatively, (12.07 ± 0.04) eV, respectively. Threshold ionization mass spectra were recorded from 13.75 to 19.75 eV and the breakdown diagram was constructed by plotting the fractional abundances of the parent ion and ionic dissociation products as a function of photon energy. The seven lowest energy dissociative photoionization channels of benzonitrile were found to yield CN˙ + c-C6H5+, HCN + C6H4˙+, C2H4 + HC5N˙+, HC3N + C4H4˙+, H2C3N˙ + C4H3+, CH2CHCN + C4H2˙+ and H2C4N˙ + c-C3H3+. HCN loss from the benzonitrile cation is the dominant dissociation channel from the dissociation onset of up to 18.1 eV and CH2CHCN loss becomes dominant from 18.1 eV and up. We present extensive potential energy surface calculations on the C6H5CN˙+ surface to rationalize the detected products. The breakdown diagram and time-of-flight mass spectra are fitted using a Rice-Ramsperger-Kassel-Marcus statistical model. Anchoring the fit to the CBS-QB3 result (3.42 eV) for the barrier to HCN loss, we obtained experimental dissociation barriers for the products of 4.30 eV (CN loss), 5.53 eV (C2H4 loss), 4.33 eV (HC3N loss), 5.15 eV (H2C3N loss), 4.93 eV (CH2CHCN loss) and 4.41 eV (H2C4N loss). We compare our work to studies of the electron-induced dissociative ionization of benzonitrile and isoelectronic phenylacetylene (C8H6), as well as the VUV-induced dissociation of protonated benzonitrile (C6H5CNH+). Also, we discuss the potential role of barrierless association reactions found for some of the identified fragments as a source of benzonitrile(˙+) in interstellar chemistry and in Titan's atmosphere.

11.
Phys Chem Chem Phys ; 25(45): 31146-31152, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947458

RESUMO

2-Cyanoindene has recently been identified in the interstellar medium, however current models cannot fully account for its formation pathways. Herein, we identify and characterize 2-naphthylnitrene, which is prone to rearrange to 2- and 3-cyanoindene, in the gas phase using photoion mass-selective threshold photoelectron spectroscopy (ms-TPES). The adiabatic ionization energies (AIE) of triplet nitrene (3A'') to the radical cation in its lowest-energy doublet X̃+(2A') and quartet ã+(4A') electronic states were determined to be 7.72 ± 0.02 and 8.64 ± 0.02 eV, respectively, leading to a doublet-quartet energy splitting (ΔED-Q) of 0.92 eV (88.8 kJ mol-1). A ring-contraction mechanism yields 3-cyanoindene, which is selectively formed under mild pyrolysis conditions (800 K), while the lowest-energy isomer, 2-cyanoindene, is also observed under harsh pyrolysis conditions at 1100 K. The isomer-selective assignment was rationalized by Franck-Condon spectral modeling and by measuring the AIEs at 8.64 ± 0.02 and 8.70 ± 0.02 eV for 2- and 3-cyanoindene, respectively, in good agreement with quantum chemical calculations.

12.
J Phys Chem A ; 127(3): 661-670, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36630284

RESUMO

We studied the threshold photoionization and dissociative ionization of para-, meta-, and ortho-anisaldehyde by photoelectron photoion coincidence spectroscopy in the 8.20-19.00 eV photon energy range. Vertical ionization energies by equation of motion-ionization potential-coupled cluster singles and doubles (EOM-IP-CCSD) calculations reproduce the photoelectron spectral features in all three isomers. The dissociative photoionization (DPI) pathways of para- and meta-anisaldehyde are similar and differ markedly from those of ortho-anisaldehyde. In the para and meta isomers, the lowest-energy DPI channel corresponds to hydrogen atom loss to form the C8H7O2+ fragment at m/z 135, which undergoes sequential dissociation processes at higher energies, such as carbon monoxide loss to C7H7O+ (m/z 107) and further, sequential CH3, CH2O, and CH2CO losses to produce C6H4O+ (m/z 92), C6H5+ (m/z 77), and C5H5+ (m/z 65), respectively. Carbon monoxide loss from the parent ions, yielding C7H8O+ (m/z 108), is a subordinate dissociation channel parallel to H atom loss. At higher energies, it also gives rise to sequential formaldehyde (CH2O) loss to produce C6H6+ (m/z 78). In the ortho-anisaldehyde cation, the vicinity of the aldehyde and methoxy groups opens up low-energy hydrogen-transfer processes, which allow for seven fragmentation channels to compete effectively with the H- and CO-loss channels. Thus, the fragmentation mechanism changes considerably, thanks to the steric interaction of the substituents. Functional group interactions, in particular H transfer pathways, must therefore be considered when predicting the isomer-specific unimolecular decomposition mechanism of cationic and neutral species, as well as mass spectra for isomers.

13.
J Phys Chem A ; 127(41): 8574-8583, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734109

RESUMO

The thermal decomposition of 2- and 4-iodobenzyl iodide at high temperatures was investigated by mass-selective threshold photoelectron spectroscopy (ms-TPES) in the gas phase, as well as by matrix isolation infrared spectroscopy in cryogenic matrices. Scission of the benzylic C-I bond in the precursors at 850 K affords 2- and 4-iodobenzyl radicals (ortho- and para-IC6H4CH2•), respectively, in high yields. The adiabatic ionization energies of ortho-IC6H4CH2• to the X̃+(1A') and ã+(3A') cation states were determined to be 7.31 ± 0.01 and 8.78 ± 0.01 eV, whereas those of para-IC6H4CH2• were measured to be 7.17 ± 0.01 eV for X̃+(1A1) and 8.98 ± 0.01 eV for ã+(3A1). Vibrational frequencies of the ring breathing mode were measured to be 560 ± 80 and 240 ± 80 cm-1 for the X̃+(1A') and ã+(3A') cation states of ortho-IC6H4CH2•, respectively. At higher temperatures, subsequent aryl C-I cleavage takes place to form α,2- and α,4-didehydrotoluene diradicals, which rapidly undergo ring contraction to a stable product, fulvenallene. Nevertheless, the most intense vibrational bands of the elusive α,2- and α,4-didehydrotoluene diradicals were observed in the Ar matrices. In addition, high-energy and astrochemically relevant C7H6 isomers 1-, 2-, and 5-ethynylcyclopentadiene are observed at even higher pyrolysis temperatures along with fulvenallene. Complementary quantum chemical computations on the C7H6 potential energy surface predict a feasible reaction cascade at high temperatures from the diradicals to fulvenallene, supporting the experimental observations in both the gas phase and cryogenic matrices.

14.
J Chem Phys ; 158(13): 134303, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031131

RESUMO

We report a joint experimental and computational study of the photoelectron spectroscopy and the dissociative photoionization of fulminic acid, HCNO. The molecule is of interest to astrochemistry and astrobiology as a potential precursor of prebiotic molecules. Synchrotron radiation was used as the photon source. Dispersive photoelectron spectra were recorded from 10 to 22 eV, covering four band systems in the HCNO cation, and an ionization energy of 10.83 eV was determined. Transitions into the Renner-Teller distorted X+2Π state of the cation were simulated using wavepacket dynamics based on a vibronic coupling Hamiltonian. Very good agreement between experiment and theory is obtained. While the first excited state of the cation shows only a broad and unstructured spectrum, the next two higher states exhibit a well-resolved vibrational progression. Transitions into the excited electronic states of HCNO+ were not simulated due to the large number of electronic states that contribute to these transitions. Nevertheless, a qualitative assignment is given, based on the character of the orbitals involved in the transitions. The dissociative photoionization was investigated by photoelectron-photoion coincidence spectroscopy. The breakdown diagram shows evidence for isomerization from HCNO+ to HNCO+ on the cationic potential energy surface. Zero Kelvin appearance energies for the daughter ions HCO+ and NCO+ have been derived.

15.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835141

RESUMO

Organic peroxy radicals (RO2) as key intermediates in tropospheric chemistry exert a controlling influence on the cycling of atmospheric reactive radicals and the production of secondary pollutants, such as ozone and secondary organic aerosols (SOA). Herein, we present a comprehensive study of the self-reaction of ethyl peroxy radicals (C2H5O2) by using advanced vacuum ultraviolet (VUV) photoionization mass spectrometry in combination with theoretical calculations. A VUV discharge lamp in Hefei and synchrotron radiation at the Swiss Light Source (SLS) are employed as the photoionization light sources, combined with a microwave discharge fast flow reactor in Hefei and a laser photolysis reactor at the SLS. The dimeric product, C2H5OOC2H5, as well as other products, CH3CHO, C2H5OH and C2H5O, formed from the self-reaction of C2H5O2 are clearly observed in the photoionization mass spectra. Two kinds of kinetic experiments have been performed in Hefei by either changing the reaction time or the initial concentration of C2H5O2 radicals to confirm the origins of the products and to validate the reaction mechanisms. Based on the fitting of the kinetic data with the theoretically calculated results and the peak area ratios in the photoionization mass spectra, a branching ratio of 10 ± 5% for the pathway leading to the dimeric product C2H5OOC2H5 is measured. In addition, the adiabatic ionization energy (AIE) of C2H5OOC2H5 is determined at 8.75 ± 0.05 eV in the photoionization spectrum with the aid of Franck-Condon calculations and its structure is revealed here for the first time. The potential energy surface of the C2H5O2 self-reaction has also been theoretically calculated with a high-level of theory to understand the reaction processes in detail. This study provides a new insight into the direct measurement of the elusive dimeric product ROOR and demonstrates its non-negligible branching ratio in the self-reaction of small RO2 radicals.


Assuntos
Ozônio , Vácuo , Espectrometria de Massas/métodos , Fotólise
16.
Chimia (Aarau) ; 77(3): 132-138, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047816

RESUMO

Understanding the reaction mechanism is critical yet challenging in heterogeneous catalysis. Reactive intermediates, e.g., radicals and ketenes, are short-lived and often evade detection. In this review, we summarize recent developments with operando photoelectron photoion coincidence (PEPICO) spectroscopy as a versatile tool capable of detecting elusive intermediates. PEPICO combines the advantages of mass spectrometry and the isomer-selectivity of threshold photoelectron spectroscopy. Recent applications of PEPICO in understanding catalyst synthesis and catalytic reaction mechanisms involving gaseous and surface-confined radical and ketene chemistry will be summarized.

17.
Angew Chem Int Ed Engl ; 62(32): e202305881, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37252753

RESUMO

We report the first direct detection of ethyl radical in the pyrolysis of ethane. Observation of this vital intermediate was made possible in this extremely reactive environment by the use of a microreactor coupled with synchrotron radiation and photoelectron photoion coincidence (PEPICO) spectroscopy, despite its short lifetime and low concentration. Together with ab-initio master equation-calculated rates and fully coupled computational fluid dynamics simulations, our measurements show that even under the low pressures and short residence times in our experiment, ethyl formation can only be explained by bimolecular reactions; the most important is the catalytic attack of ethane by H atoms, which are then regenerated by decomposition of the nascent ethyl radicals. Our results complete the observation of all hypothesized intermediates in this industrially important process and highlight the need for further studies under additional conditions using similar methods to improve existing models and optimize process chemistries.

18.
Chemistry ; 28(42): e202201378, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35622451

RESUMO

We have investigated the photoionization of ammonia borane (AB) and determined adiabatic ionization energy to be 9.26±0.03 eV for the X+ 2 E←X 1 A1 transition. Although the threshold photoelectron spectrum appears at first glance to be similar to the one of the isosteric ethane, the electronic situation differs markedly, due to different orbital energies. In addition, an appearance energy AE0K (NH3 BH3 , NH3 BH2 + )= 10.00±0.03 eV has been determined, corresponding to the loss of a hydrogen atom at the BH3 -site. From the data, a 0 K bond dissociation energy for the B-H bond in the cation of 71.5±3 kJ mol-1 was derived, whereas the one in the neutral compound has been estimated to be 419±10 kJ mol-1 .

19.
Faraday Discuss ; 238(0): 645-664, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35822493

RESUMO

The unimolecular isomerisation of the prompt propargyl + propargyl "head-to-head" adduct, 1,5-hexadiyne, to fulvene and benzene by the 3,4-dimethylenecyclobut-1-ene (DMCB) intermediate (all C6H6) was studied in the high-pressure limit by threshold photoelectron (TPE) spectroscopy. TPE spectra (TPES) were recorded with photoelectron photoion coincidence spectroscopy using synchrotron vacuum ultraviolet radiation. Reference TPES, obtained using pure compounds or judiciously extracted from the pyrolysis data, served as basis functions for pyrolysis quantification. From these spectra, we measured a revised fulvene ionisation energy of 8.401 ± 0.005 eV. Temperature-dependent pyrolysis spectra were decomposed using these basis functions. The basis function coefficients were converted to product yields relying on assumed integral threshold photoionisation cross sections obtained by three, partially mutually exclusive sets of assumptions. Thus, the product yields of DMCB, fulvene, and benzene have been established, as well as their uncertainty. The derived mole fractions are consistent with modeling based on the C6H6 potential and RRKM master equation model of Miller and Klippenstein [J. Phys. Chem. A, 2003, 107, 7783]. Although our results are fully consistent with the parallel isomerisation pathways to benzene and fulvene found by Miller and Klippenstein, we observe the onset of fulvene at a lower temperature than that of the onset of benzene, in agreement with the master equation model but in contrast to the previous experiments of Stein et al. [Proc. Combust. Inst., 1990, 23, 85]. This work promotes the use of photoion mass-selected threshold photoelectron spectroscopy as a rapid, sensitive, isomer-selective, and quantitative detection tool among the panoply of established analytical techniques.

20.
Phys Chem Chem Phys ; 24(3): 1437-1446, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34984425

RESUMO

The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00-10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH3OH)nH+. However, the stable dimer parent ion (CH3OH)2+ is readily detected below the dissociation threshold to yield the dominant CH3OH2+ fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH3OH)2+ parent ion dissociates via five parallel channels at low internal energies. The loss of both CH2OH and CH3O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH3(H)OH+⋯CH2OH ion, the precursor to the CH2OH-, H2O-, and CH3-loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH3OH2+, which explains the dominance of the protonated methanol fragment ion in the mass spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA