RESUMO
Complement-mediated diseases can be treated using systemic inhibitors. However, complement components are abundant in circulation, affecting systemic inhibitors' exposure and efficacy. Furthermore, because of complement's essential role in immunity, systemic treatments raise infection risk in patients. To address these challenges, we developed antibody fusion proteins combining the alternative-pathway complement inhibitor factor H (fH1-5) with an anti-C3d monoclonal antibody (C3d-mAb-2fH). Because C3d is deposited at sites of complement activity, this molecule localizes to tissue complement while minimizing circulating complement engagement. These fusion proteins bind to deposited complement in diseased human skin sections and localize to activated complement in a primate skin injury model. We further explored the pharmacology of C3d-mAb-2fH proteins in rodent models with robust tissue complement activation. Doses of C3d-mAb-2fH >1 mg/kg achieved >75% tissue complement inhibition in mouse and rat injury models while avoiding circulating complement blockade. Glomerular-specific complement inhibition reduced proteinuria and preserved podocyte foot-process architecture in rat membranous nephropathy, indicating disease-modifying efficacy. These data indicate that targeting local tissue complement results in durable and efficacious complement blockade in skin and kidney while avoiding systemic inhibition, suggesting broad applicability of this approach in treating a range of complement-mediated diseases.
Assuntos
Fator H do Complemento , Nefropatias , Humanos , Camundongos , Ratos , Animais , Fator H do Complemento/genética , Complemento C3d/metabolismo , Nefropatias/etiologia , Anticorpos , Ativação do ComplementoRESUMO
BACKGROUND: Failure of the glomerular filtration barrier, primarily by loss of slit diaphragm architecture, underlies nephrotic syndrome in minimal change disease. The etiology remains unknown. The efficacy of B cell-targeted therapies in some patients, together with the known proteinuric effect of anti-nephrin antibodies in rodent models, prompted us to hypothesize that nephrin autoantibodies may be present in patients with minimal change disease. METHODS: We evaluated sera from patients with minimal change disease, enrolled in the Nephrotic Syndrome Study Network (NEPTUNE) cohort and from our own institutions, for circulating nephrin autoantibodies by indirect ELISA and by immunoprecipitation of full-length nephrin from human glomerular extract or a recombinant purified extracellular domain of human nephrin. We also evaluated renal biopsies from our institutions for podocyte-associated punctate IgG colocalizing with nephrin by immunofluorescence. RESULTS: In two independent patient cohorts, we identified circulating nephrin autoantibodies during active disease that were significantly reduced or absent during treatment response in a subset of patients with minimal change disease. We correlated the presence of these autoantibodies with podocyte-associated punctate IgG in renal biopsies from our institutions. We also identified a patient with steroid-dependent childhood minimal change disease that progressed to end stage kidney disease; she developed a massive post-transplant recurrence of proteinuria that was associated with high pretransplant circulating nephrin autoantibodies. CONCLUSIONS: Our discovery of nephrin autoantibodies in a subset of adults and children with minimal change disease aligns with published animal studies and provides further support for an autoimmune etiology. We propose a new molecular classification of nephrin autoantibody minimal change disease to serve as a framework for instigation of precision therapeutics for these patients.
Assuntos
Autoanticorpos/sangue , Proteínas de Membrana/imunologia , Nefrose Lipoide/sangue , Nefrose Lipoide/etiologia , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Nefrose Lipoide/patologia , Podócitos/patologiaRESUMO
The Collaborative Cohort of Cohorts for COVID-19 Research (C4R) is a national prospective study of adults comprising 14 established US prospective cohort studies. Starting as early as 1971, investigators in the C4R cohort studies have collected data on clinical and subclinical diseases and their risk factors, including behavior, cognition, biomarkers, and social determinants of health. C4R links this pre-coronavirus disease 2019 (COVID-19) phenotyping to information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and acute and postacute COVID-related illness. C4R is largely population-based, has an age range of 18-108 years, and reflects the racial, ethnic, socioeconomic, and geographic diversity of the United States. C4R ascertains SARS-CoV-2 infection and COVID-19 illness using standardized questionnaires, ascertainment of COVID-related hospitalizations and deaths, and a SARS-CoV-2 serosurvey conducted via dried blood spots. Master protocols leverage existing robust retention rates for telephone and in-person examinations and high-quality event surveillance. Extensive prepandemic data minimize referral, survival, and recall bias. Data are harmonized with research-quality phenotyping unmatched by clinical and survey-based studies; these data will be pooled and shared widely to expedite collaboration and scientific findings. This resource will allow evaluation of risk and resilience factors for COVID-19 severity and outcomes, including postacute sequelae, and assessment of the social and behavioral impact of the pandemic on long-term health trajectories.
Assuntos
COVID-19 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Pandemias , Estudos Prospectivos , SARS-CoV-2 , Estados Unidos/epidemiologia , Adulto JovemRESUMO
Primary membranous nephropathy is a leading cause of adult nephrotic syndrome. The field took a major step forward with the identification of phospholipase A2 receptor (PLA2R) as a target antigen in the majority of cases and with the ability to measure circulating autoantibodies to PLA2R. Since then, the existence of additional target antigens such as thrombospondin type-1 domain-containing 7A, exostosin 1 and 2, neural EGFL like 1, and semaphorin 3B has been demonstrated. The ability to detect and monitor levels of circulating autoantibodies has opened a new window onto the humoral aspect of primary membranous nephropathy. Clinicians now rely on clinical parameters such as proteinuria, as well as levels of circulating autoantibodies against PLA2R and the results of immunofluorescence staining for PLA2R within kidney biopsy tissue, to guide the management of this disease. The relationship between immunologic and clinical disease course is consistent, but not necessarily intuitive. In addition, kidney biopsy provides only a single snapshot of disease that needs to be interpreted in light of changing clinical and serological findings. A clear understanding of these dynamic parameters is essential for staging, treatment, and management of this disease. This review aims to shed light on current knowledge regarding the development and time course of changes in the serum levels of autoantibodies against PLA2R, proteinuria, and histological findings that underlie the pathophysiology of primary membranous nephropathy.
Assuntos
Glomerulonefrite Membranosa , Adulto , Autoanticorpos , Progressão da Doença , Glomerulonefrite Membranosa/diagnóstico , Humanos , Proteinúria , Receptores da Fosfolipase A2RESUMO
Roundabout guidance receptor 2 (ROBO2) plays an important role during early kidney development. ROBO2 is expressed in podocytes, inhibits nephrin-induced actin polymerization, down-regulates nonmuscle myosin IIA activity, and destabilizes kidney podocyte adhesion. However, the role of ROBO2 during kidney injury, particularly in mature podocytes, is not known. Herein, we report that loss of ROBO2 in podocytes [Robo2 conditional knockout (cKO) mouse] is protective from glomerular injuries. Ultrastructural analysis reveals that Robo2 cKO mice display less foot process effacement and better-preserved slit-diaphragm density compared with wild-type littermates injured by either protamine sulfate or nephrotoxic serum (NTS). The Robo2 cKO mice also develop less proteinuria after NTS injury. Further studies reveal that ROBO2 expression in podocytes is up-regulated after glomerular injury because its expression levels are higher in the glomeruli of NTS injured mice and passive Heymann membranous nephropathy rats. Moreover, the amount of ROBO2 in the glomeruli is also elevated in patients with membranous nephropathy. Finally, overexpression of ROBO2 in cultured mouse podocytes compromises cell adhesion. Taken together, these findings suggest that kidney injury increases glomerular ROBO2 expression that might compromise podocyte adhesion and, thus, loss of Robo2 in podocytes could protect from glomerular injury by enhancing podocyte adhesion that helps maintain foot process structure. Our findings also suggest that ROBO2 is a therapeutic target for podocyte injury and podocytopathy.
Assuntos
Nefropatias/prevenção & controle , Glomérulos Renais/citologia , Podócitos/citologia , Substâncias Protetoras/metabolismo , Receptores Imunológicos/deficiência , Adulto , Animais , Feminino , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/metabolismo , Proteinúria/metabolismo , Proteinúria/patologia , Proteinúria/prevenção & controle , RatosRESUMO
The genomic region encoding the miR-17-92 microRNA (miRNA) cluster is often amplified in lymphoma and other cancers, and cancer cells carrying this amplification have higher expression of miRNA in this cluster. Retroviral expression of miR-17-92 accelerates c-Myc-induced lymphoma development, but precisely how higher expression of miR-17-92 promotes lymphomagenesis remains unclear. Here we generated mice with higher expression of miR-17-92 in lymphocytes. These mice developed lymphoproliferative disease and autoimmunity and died prematurely. Lymphocytes from these mice showed more proliferation and less activation-induced cell death. The miR-17-92 miRNA suppressed expression of the tumor suppressor PTEN and the proapoptotic protein Bim. This mechanism probably contributed to the lymphoproliferative disease and autoimmunity of miR-17-92-transgenic mice and contributes to lymphoma development in patients with amplifications of the miR-17-92 coding region.
Assuntos
Doenças Autoimunes/genética , Linfócitos/imunologia , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/imunologia , MicroRNAs/biossíntese , MicroRNAs/genética , Animais , Doenças Autoimunes/patologia , Morte Celular/genética , Morte Celular/imunologia , Proliferação de Células , Células Cultivadas , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Células Jurkat , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos/metabolismo , Linfoma/genética , Linfoma/imunologia , Transtornos Linfoproliferativos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/fisiologiaRESUMO
Plasma cell dyscrasias, including multiple myeloma (MM), are associated with diverse forms of pathology in the kidney. Some pathologic lesions, including light chain (myeloma) cast nephropathy (LCCN), are relatively common, while others, such as light chain proximal tubulopathy (LCPT), are less so. Both LCCN and LCPT are associated with clinical manifestations of acute kidney injury. Rare instances of coincidental LCPT and LCCN have been reported, but none to our knowledge of coincidental crystalline forms of these diseases, with similar forms appearing in the urine. While LCPT is usually associated with intracytoplasmic deposition of crystallized light chains, the intraluminal light chain casts in LCCN are typically amorphous and do not form crystals. We report here the co-occurrence of these two monoclonal crystalline forms of acute kidney injury in a 66-year-old woman with known history of κ-restricted multiple myeloma. Additionally, forms suggestive of a crystalline morphology were observed in the urine sediment. Clinicians who observe similar crystalline structures on renal biopsy or in urine sediment should have a high index of suspicion for underlying multiple myeloma as a unifying diagnosis.
Assuntos
Injúria Renal Aguda/complicações , Cadeias Leves de Imunoglobulina/análise , Túbulos Renais Proximais/patologia , Mieloma Múltiplo/patologia , Idoso , Cristalização , Feminino , Humanos , Nefropatias/patologia , Mieloma Múltiplo/urina , Urina/citologiaRESUMO
Phagocytosis of apoptotic cells by both professional and semi-professional phagocytes is required for resolution of organ damage and maintenance of immune tolerance. KIM-1/TIM-1 is a phosphatidylserine receptor that is expressed on epithelial cells and can transform the cells into phagocytes. Here, we demonstrate that KIM-1 phosphorylation and association with p85 results in encapsulation of phagosomes by lipidated LC3 in multi-membrane organelles. KIM-1-mediated phagocytosis is not associated with increased ROS production, and NOX inhibition does not block LC3 lipidation. Autophagy gene expression is required for efficient clearance of apoptotic cells and phagosome maturation. KIM-1-mediated phagocytosis leads to pro-tolerogenic antigen presentation, which suppresses CD4 T-cell proliferation and increases the percentage of regulatory T cells in an autophagy gene-dependent manner. Taken together, these data reveal a novel mechanism of epithelial biology linking phagocytosis, autophagy and antigen presentation to regulation of the inflammatory response.
Assuntos
Apresentação de Antígeno/fisiologia , Linfócitos T CD4-Positivos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas Associadas aos Microtúbulos/imunologia , Fagocitose/fisiologia , Proteínas Serina-Treonina Quinases/imunologia , Receptores Virais/imunologia , Apoptose , Proteína 5 Relacionada à Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Linfócitos T CD4-Positivos/citologia , Proliferação de Células/fisiologia , Células HEK293 , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipoilação/fisiologia , Glicoproteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/imunologia , Receptores Virais/genéticaRESUMO
Background FSGS is a pattern of podocyte injury that leads to loss of glomerular function. Podocytes support other podocytes and glomerular capillary structure, oppose hemodynamic forces, form the slit diaphragm, and have mechanical properties that permit these functions. However, the biophysical characteristics of glomeruli and podocytes in disease remain unclear.Methods Using microindentation, atomic force microscopy, immunofluorescence microscopy, quantitative RT-PCR, and a three-dimensional collagen gel contraction assay, we studied the biophysical and structural properties of glomeruli and podocytes in chronic (Tg26 mice [HIV protein expression]) and acute (protamine administration [cytoskeletal rearrangement]) models of podocyte injury.Results Compared with wild-type glomeruli, Tg26 glomeruli became progressively more deformable with disease progression, despite increased collagen content. Tg26 podocytes had disordered cytoskeletons, markedly abnormal focal adhesions, and weaker adhesion; they failed to respond to mechanical signals and exerted minimal traction force in three-dimensional collagen gels. Protamine treatment had similar but milder effects on glomeruli and podocytes.Conclusions Reduced structural integrity of Tg26 podocytes causes increased deformability of glomerular capillaries and limits the ability of capillaries to counter hemodynamic force, possibly leading to further podocyte injury. Loss of normal podocyte mechanical integrity could injure neighboring podocytes due to the absence of normal biophysical signals required for podocyte maintenance. The severe defects in podocyte mechanical behavior in the Tg26 model may explain why Tg26 glomeruli soften progressively, despite increased collagen deposition, and may be the basis for the rapid course of glomerular diseases associated with severe podocyte injury. In milder injury (protamine), similar processes occur but over a longer time.
Assuntos
Fenômenos Biofísicos , Citoesqueleto/fisiologia , Glomerulonefrite/fisiopatologia , Nefrose Lipoide/fisiopatologia , Podócitos/fisiologia , Animais , Adesão Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Módulo de Elasticidade , Glomerulonefrite/genética , Glomerulonefrite/patologia , HIV/genética , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Microscopia de Fluorescência , Nefrose Lipoide/induzido quimicamente , Nefrose Lipoide/patologia , Paxilina/metabolismo , Podócitos/patologia , Protaminas , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Oxidative damage to renal tubular epithelial cells is a fundamental pathogenic mechanism implicated in both acute kidney injury and chronic kidney diseases. Because epithelial cell survival influences the outcome of acute kidney injury and chronic kidney diseases, identifying its molecular regulators could provide new insight into pathobiology and possible new therapeutic strategies for these diseases. We have identified transmembrane and immunoglobulin domain-containing 1 (TMIGD1) as a novel adhesion molecule, which is highly conserved in humans and other species. TMIGD1 is expressed in renal tubular epithelial cells and promotes cell survival. The extracellular domain of TMIGD1 contains two putative immunoglobulin domains and mediates self-dimerization. Our data suggest that TMIGD1 regulates transepithelial electric resistance and permeability of renal epithelial cells. TMIGD1 controls cell migration, cell morphology, and protects renal epithelial cells from oxidative- and nutrient-deprivation-induced cell injury. Hydrogen peroxide-induced oxidative cell injury downregulates TMIGD1 expression and targets it for ubiquitination. Moreover, TMIGD1 expression is significantly affected in both acute kidney injury and in deoxy-corticosterone acetate and sodium chloride (deoxy-corticosterone acetate salt)-induced chronic hypertensive kidney disease mouse models. Taken together, we have identified TMIGD1 as a novel cell adhesion molecule expressed in kidney epithelial cells that protects kidney epithelial cells from oxidative cell injury to promote cell survival.
Assuntos
Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Glicoproteínas de Membrana/metabolismo , Estresse Oxidativo/fisiologia , Injúria Renal Aguda/patologia , Animais , Moléculas de Adesão Celular/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Imunoglobulinas/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Camundongos da Linhagem 129 , RNA Mensageiro/metabolismoRESUMO
There is little information about pregnancy outcomes in patients with active membranous nephropathy (MN), especially those with circulating autoantibodies to M-type phospholipase A2receptor (PLA2R), the major autoantigen in primary MN. We present what we believe to be the first known case of successful pregnancy in a 39-year-old woman with PLA2R-associated MN. In the year prior to pregnancy, the patient developed anasarca, hypoalbuminemia (albumin, 1.3-2.2g/dL), and proteinuria (protein excretion, 29.2 g/d). Kidney biopsy revealed MN with staining for PLA2R, and the patient was seropositive for anti-PLA2R autoantibodies. She did not respond to conservative therapy and was treated with intravenous rituximab (2 doses of 1 g each). Several weeks after presentation, she was found to be 6 weeks pregnant and was closely followed up without further immunosuppressive treatment. Proteinuria remained with protein excretion in the 8- to 12-g/d range. Circulating anti-PLA2R levels declined but were still detectable. At 38 weeks, a healthy baby girl was born, without proteinuria at birth or at her subsequent 6-month postnatal visit. At the time of delivery, the mother still had detectable circulating anti-PLA2R of immunoglobulin G1 (IgG1), IgG3, and IgG4 subclasses, although at low titers. Only trace amounts of IgG4 anti-PLA2R were found in cord blood. Potential reasons for the discrepancy between anti-PLA2R levels in the maternal and fetal circulation are discussed.
Assuntos
Autoanticorpos/imunologia , Glomerulonefrite Membranosa/imunologia , Complicações na Gravidez/imunologia , Receptores da Fosfolipase A2/imunologia , Adulto , Feminino , Glomerulonefrite Membranosa/tratamento farmacológico , Humanos , Imunossupressores/uso terapêutico , Gravidez , Rituximab/uso terapêuticoRESUMO
A Black woman in her 40s with past medical history significant for obesity treated with Roux-en-Y bypass surgery and a history of Raynaud's phenomenon, presented with acute pulmonary edema secondary to severe malignant hypertension and critically accelerated acute kidney injury, with evidence of systemic microangiopathic hemolytic anemia in the setting of clinical suspicion of systemic sclerosis sine scleroderma. Renin-angiotensin system blockade (angiotensin-converting enzyme inhibitor) was immediately started at the maximum possible dose in the setting of scleroderma renal crisis. Despite better control of blood pressure and volume status, kidney function continued to rapidly decline, thus a decision was made to go ahead with a kidney biopsy on day 3 of admission, which revealed severe features of scleroderma renal crisis with active thrombotic microangiopathy. The multidisciplinary team elected to treat the patient with terminal complement blockade using eculizumab in addition to high dose lisinopril and blood pressure control. Her serum creatinine peaked at 9.3 mg/dL shortly after eculizumab initiation, but improved soon after, dropping to 2.8 mg/dL after completion of the final eculizumab dose and 1.8 mg/dL 3 years later.
RESUMO
Background: Transmission electron microscopy (TEM) images can visualize kidney glomerular filtration barrier ultrastructure, including the glomerular basement membrane (GBM) and podocyte foot processes (PFP). Podocytopathy is associated with glomerular filtration barrier morphological changes observed experimentally and clinically by measuring GBM or PFP width. However, these measurements are currently performed manually. This limits research on podocytopathy disease mechanisms and therapeutics due to labor intensiveness and inter-operator variability. Methods: We developed a deep learning-based digital pathology computational method to measure GBM and PFP width in TEM images from the kidneys of Integrin-Linked Kinase (ILK) podocyte-specific conditional knockout (cKO) mouse, an animal model of podocytopathy, compared to wild-type (WT) control mouse. We obtained TEM images from WT and ILK cKO littermate mice at 4 weeks old. Our automated method was composed of two stages: a U-Net model for GBM segmentation, followed by an image processing algorithm for GBM and PFP width measurement. We evaluated its performance with a 4-fold cross-validation study on WT and ILK cKO mouse kidney pairs. Results: Mean (95% confidence interval) GBM segmentation accuracy, calculated as Jaccard index, was 0.73 (0.70-0.76) for WT and 0.85 (0.83-0.87) for ILK cKO TEM images. Automated and manual GBM width measurements were similar for both WT (p=0.49) and ILK cKO (p=0.06) specimens. While automated and manual PFP width measurements were similar for WT (p=0.89), they differed for ILK cKO (p<0.05) specimens. WT and ILK cKO specimens were morphologically distinguishable by manual GBM (p<0.05) and PFP (p<0.05) width measurements. This phenotypic difference was reflected in the automated GBM (p<0.05) more than PFP (p=0.06) widths. Conclusions: These results suggest that certain automated measurements enabled via deep learning-based digital pathology tools could distinguish healthy kidneys from those with podocytopathy. Our proposed method provides high-throughput, objective morphological analysis and could facilitate podocytopathy research and translate into clinical diagnosis.
RESUMO
RATIONALE: Early steps in glomerular injury are poorly understood in collagen IV nephropathies. OBJECTIVES: We characterized structural, functional, and biophysical properties of glomerular capillaries and podocytes in Col4α3-/- mice and analyzed kidney cortex transcriptional profiles at various disease stages. We investigated the effects of TUDCA (suppresses ER stress) on these parameters and used human FSGS transcriptomic data to identify pathways rescued by TUDCA. FINDINGS: In Col4α3-/- mice, podocyte injury develops by 3 months, with maximum glomerular deformability and 40% podocyte loss at 4 months. This period is followed is followed by glomerular capillary stiffening, proteinuria, reduced renal function, inflammatory infiltrates, and fibrosis. Bulk RNA sequencing at sequential time points revealed progressive increases in inflammatory and injury gene expression, and activation of the TNF pathway. Mapping Podocyte-enriched genes from FSGS patients to mice showed that TUDCA, which mitigated renal injury suppressed molecular pathways associated with podocyte stress, hypertrophy and tubulo-interstitial injury. CONCLUSIONS: Col4α3-/- nephropathy progresses in two phases. The first is characterized by podocytopathy, increased glomerular capillary deformability and accelerated podocyte loss, and the second by increased capillary wall stiffening and renal inflammatory and profibrotic pathway activation. The response of podocytes to TUDCA treatment provides insights into signaling pathways in Alport and related nephropathies.
RESUMO
This study investigates correlates of anti-S1 antibody response following COVID-19 vaccination in a U.S. population-based meta-cohort of adults participating in longstanding NIH-funded cohort studies. Anti-S1 antibodies were measured from dried blood spots collected between February 2021-August 2022 using Luminex-based microsphere immunoassays. Of 6245 participants, mean age was 73 years (range, 21-100), 58% were female, and 76% were non-Hispanic White. Nearly 52% of participants received the BNT162b2 vaccine and 48% received the mRNA-1273 vaccine. Lower anti-S1 antibody levels are associated with age of 65 years or older, male sex, higher body mass index, smoking, diabetes, COPD and receipt of BNT16b2 vaccine (vs mRNA-1273). Participants with a prior infection, particularly those with a history of hospitalized illness, have higher anti-S1 antibody levels. These results suggest that adults with certain socio-demographic and clinical characteristics may have less robust antibody responses to COVID-19 vaccination and could be prioritized for more frequent re-vaccination.
Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Adulto , Humanos , Feminino , Masculino , Idoso , Formação de Anticorpos , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Demografia , VacinaçãoRESUMO
Igα serine 191 and 197 and threonine 203, which are located in proximity of the Igα ITAM, dampen Igα ITAM tyrosine phosphorylation. In this study, we show that mice with targeted mutations of Igα S191, 197, and T203 displayed elevated serum IgG2c and IgG2b concentrations and had elevated numbers of IgG2c- and IgG2b-secreting cells in the bone marrow. BCR-induced Igα tyrosine phosphorylation was slightly increased in splenic B cells. Our results suggest that Igα serine/threonines limit formation of IgG2c- and IgG2b-secreting bone marrow plasma cells, possibly by fine-tuning Igα tyrosine-mediated BCR signaling.
Assuntos
Células da Medula Óssea/citologia , Mutação/imunologia , Plasmócitos/citologia , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/imunologia , Sequência de Aminoácidos , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Separação Celular , Citoplasma/química , Citoplasma/imunologia , Citoplasma/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação/genética , Fosforilação , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Serina/química , Serina/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Treonina/química , Treonina/imunologia , Tirosina/metabolismoRESUMO
Rationale & Objective: Limited data exist on patient perspectives of the implications of kidney biopsies. We explored patients' perspectives alongside those of clinicians to better understand how kidney biopsies affect patients' viewpoints and the clinical utility of biopsies. Study Design: Prospective Cohort Study. Setting & Participants: Patient participants and clinicians in the Kidney Precision Medicine Project, a prospective cohort study of patients who undergo a research protocol biopsy, at 9 recruitment sites across the United States. Surveys were completed at enrollment before biopsy and additional timepoints after biopsy (participants: 28 days, 6 months; clinicians: 2 weeks). Analytical Approach: Kappa statistics assessed prebiopsy etiology concordance between clinicians and participants. Participant perspectives after biopsy were analyzed using a thematic approach. Clinician ratings of clinical management value were compared to prebiopsy ratings with Wilcoxon matched-pairs signed-rank tests and paired t tests. Results: A total of 167 participants undergoing biopsy (124 participants with chronic kidney disease [CKD], 43 participants with acute kidney injury [AKI]) and 58 clinicians were included in this study. CKD participants and clinicians had low etiology concordance for the 2 leading causes of CKD: diabetes (k = 0.358) and hypertension (k = 0.081). At 28 days postbiopsy, 46 (84%) participants reported that the biopsy affected their understanding of their diagnosis, and 21 (38%) participants reported that the results of the biopsy affected their medications. Participants also shared biopsy impressions in free-text responses, including impacts on lifestyle and concurrent condition management. The biopsy positively shifted clinician perceptions of the procedure's clinical management benefits, while perceptions of prognostic value decreased and diagnostic ratings remained unchanged. Limitations: Our study did not have demographic data of clinicians and could not provide insight into postbiopsy experiences for participants who did not respond to follow-up surveys. Conclusions: Participant perspectives of the personal implications of kidney biopsy can be integrated into shared decision-making between clinicians and patients. Enhanced biopsy reports and interactions between nephrologists and pathologists could augment the management and prognostic value of kidney biopsies. Plain-Language Summary: The utility of kidney biopsy is debated among clinicians, and patients' perspectives are even less explored. To address these gaps, we synthesized perspectives from clinicians and patient participants of the Kidney Precision Medicine Project (KPMP). Both before and after biopsy, clinicians were surveyed on how the procedure affected their clinical management, diagnosis, and prognosis. After biopsy, participants shared how the procedure affected their diagnosis, medication, and lifestyle changes. Clinicians and patients shared an appreciation for the biopsy's impact on medical management but diverged in their takeaways on diagnosis and prognosis. These findings highlight the need for greater collaboration between patients and clinicians, particularly as they navigate shared decision-making when considering kidney biopsy.
RESUMO
The Kidney Precision Medicine Project (KPMP) aims to create a kidney tissue atlas, define disease subgroups, and identify critical cells, pathways, and targets for novel therapies through molecular investigation of human kidney biopsies obtained from participants with acute kidney injury (AKI) or chronic kidney disease (CKD). We present the case of a 66-year-old woman with diabetic kidney disease who underwent a protocol KPMP kidney biopsy. Her clinical history included diabetes mellitus complicated by neuropathy and eye disease, increased insulin resistance, hypertension, albuminuria, and relatively preserved glomerular filtration rate (early CKD stage 3a). The patient's histopathology was consistent with diabetic nephropathy and arterial and arteriolar sclerosis. Three-dimensional, immunofluorescence imaging of the kidney biopsy specimen revealed extensive peri-glomerular neovascularization that was underestimated by standard histopathologic approaches. Spatial transcriptomics was performed to obtain gene expression signatures at discrete areas of the kidney biopsy. Gene expression in the areas of glomerular neovascularization revealed increased expression of genes involved in angiogenic signaling, proliferation and survival of endothelial cells, as well as new vessel maturation and stability. This molecular correlation provides additional insights into the development of kidney disease in patients with diabetes and spotlights how novel molecular techniques employed by the KPMP can supplement and enrich the histopathologic diagnosis obtained from a kidney biopsy.
RESUMO
Arteriolar hyalinosis in kidneys is an independent predictor of cardiovascular disease, the main cause of mortality in chronic kidney disease (CKD). The underlying molecular mechanisms of protein accumulation in the subendothelial space are not well understood. Using single cell transcriptomic data and whole slide images from kidney biopsies of patients with CKD and acute kidney injury in the Kidney Precision Medicine Project, the molecular signals associated with arteriolar hyalinosis were evaluated. Co-expression network analysis of the endothelial genes yielded three gene set modules as significantly associated with arteriolar hyalinosis. Pathway analysis of these modules showed enrichment of transforming growth factor beta / bone morphogenetic protein (TGFß / BMP) and vascular endothelial growth factor (VEGF) signaling pathways in the endothelial cell signatures. Ligand-receptor analysis identified multiple integrins and cell adhesion receptors as over-expressed in arteriolar hyalinosis, suggesting a potential role of integrin-mediated TGFß signaling. Further analysis of arteriolar hyalinosis associated endothelial module genes identified focal segmental glomerular sclerosis as an enriched term. On validation in gene expression profiles from the Nephrotic Syndrome Study Network cohort, one of the three modules was significantly associated with the composite endpoint (> 40% reduction in estimated glomerular filtration rate (eGFR) or kidney failure) independent of age, sex, race, and baseline eGFR, suggesting poor prognosis with elevated expression of genes in this module. Thus, integration of structural and single cell molecular features yielded biologically relevant gene sets, signaling pathways and ligand-receptor interactions, underlying arteriolar hyalinosis and putative targets for therapeutic intervention.
RESUMO
Glomerulosclerosis is a common pathological finding that often progresses to renal failure. The mechanisms of chronic kidney disease progression are not well defined, but may include activation of numerous vasoactive and inflammatory pathways. We hypothesized that podocytes are susceptible to filtered plasma components, including hormones and growth factors that stimulate signaling pathways leading to glomerulosclerosis. Gα12 couples to numerous G-protein-coupled receptors (GPCRs) and regulates multiple epithelial responses, including proliferation, apoptosis, permeability and the actin cytoskeleton. Herein, we report that genetic activation of Gα12 in podocytes leads to time-dependent increases in proteinuria and glomerulosclerosis. To mimic activation of Gα12 pathways, constitutively active Gα12 (QL) was conditionally expressed in podocytes using Nphs2-Cre and LacZ/floxed QLα12 transgenic mice. Some QLα12(LacZ+/Cre+) mice developed proteinuria at 4-6 months, and most were proteinuric by 12 months. Proteinuria increased with age, and by 12-14 months, many demonstrated glomerulosclerosis with ultrastructural changes, including foot process fusion and both mesangial and subendothelial deposits. QLα12(LacZ+/Cre+) mice showed no changes in podocyte number, apoptosis, proliferation or Rho/Src activation. Real-time PCR revealed no significant changes in Nphs1, Nphs2, Cd2ap or Trpc6 expression, but Col4a2 message was increased in younger and older mice, while Col4a5 was decreased in older mice. Confocal microscopy revealed disordered collagen IVα1/2 staining in older mice and loss of α5 without changes in other collagen IV subunits. Taken together, these studies suggest that Gα12 activation promotes glomerular injury without podocyte depletion through a novel mechanism regulating collagen (α)IV expression, and supports the notion that glomerular damage may accrue through persistent GPCR activation in podocytes.