Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681663

RESUMO

The role of extracellular vesicles (EVs) proteome in diffuse large B-cell lymphoma (DLBCL) pathology, subclassification, and patient screening is unexplored. We analyzed by state-of-the-art mass spectrometry the whole cell and secreted extracellular vesicles (EVs) proteomes of different molecular subtypes of DLBCL, germinal center B cell (GCB subtype), and activated B cell (ABC subtype). After quality control assessment, we compared whole-cell and secreted EVs proteomes of the two cell-of-origin (COO) categories, GCB and ABC subtypes, resulting in 288/1115 significantly differential expressed proteins from the whole-cell proteome and 228/608 proteins from EVs (adjust p-value < 0.05/p-value < 0.05). In our preclinical model system, we demonstrated that the EV proteome and the whole-cell proteome possess the capacity to separate cell lines into ABC and GCB subtypes. KEGG functional analysis and GO enrichment analysis for cellular component, molecular function, and biological process of differential expressed proteins (DEP) between ABC and GCB EVs showed a significant enrichment of pathways involved in immune response function. Other enriched functional categories for DEPs constitute cellular signaling and intracellular trafficking such as B-cell receptor (BCR), Fc_gamma R-mediated phagocytosis, ErbB signaling, and endocytosis. Our results suggest EVs can be explored as a tool for patient diagnosis, follow-up, and disease monitoring. Finally, this study proposes novel drug targets based on highly expressed proteins, for which antitumor drugs are available suggesting potential combinatorial therapies for aggressive forms of DLBCL. Data are available via ProteomeXchange with identifier PXD028267.


Assuntos
Vesículas Extracelulares/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Proteoma/análise , Proteômica/métodos , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Espectrometria de Massas
2.
Arch Biochem Biophys ; 679: 108223, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816312

RESUMO

Glucose uptake by mammalian cells is a key mechanism to maintain cell and tissue homeostasis and relies mostly on plasma membrane-localized glucose transporter proteins (GLUTs). Two main cellular mechanisms regulate GLUT proteins in the cell: first, expression of GLUT genes is under dynamic transcriptional control and is used by cancer cells to increase glucose availability. Second, GLUT proteins are regulated by membrane traffic from storage vesicles to the plasma membrane (PM). This latter process is triggered by signaling mechanisms and well-studied in the case of insulin-responsive cells, which activate protein kinase AKT to phosphorylate TBC1D4, a RAB-GTPase activating protein involved in membrane traffic regulation. Previously, we identified protein kinase WNK1 as another kinase able to phosphorylate TBC1D4 and regulate the surface expression of the constitutive glucose transporter GLUT1. Here we describe that downregulation of WNK1 through RNA interference in HEK293 cells led to a 2-fold decrease in PM GLUT1 expression, concomitant with a 60% decrease in glucose uptake. By mass spectrometry, we identified serine (S) 704 in TBC1D4 as a WNK1-regulated phosphorylation site, and also S565 in the paralogue TBC1D1. Transfection of the respective phosphomimetic or unphosphorylatable TBC1D mutants into cells revealed that both affected the cell surface abundance of GLUT1. The results reinforce a regulatory role for WNK1 in cell metabolism and have potential impact for the understanding of cancer cell metabolism and therapeutic options in type 2 diabetes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Transportador de Glucose Tipo 1/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Sítios de Ligação , Transporte Biológico , Glucose/metabolismo , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/metabolismo , Insulina/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
RNA ; 20(4): 474-82, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24550521

RESUMO

The premessenger RNA of the majority of human genes can generate various transcripts through alternative splicing, and different tissues or disease states show specific patterns of splicing variants. These patterns depend on the relative concentrations of the splicing factors present in the cell nucleus, either as a consequence of their expression levels or of post-translational modifications, such as protein phosphorylation, which are determined by signal transduction pathways. Here, we analyzed the contribution of protein kinases to the regulation of alternative splicing variant Rac1b that is overexpressed in certain tumor types. In colorectal cells, we found that depletion of AKT2, AKT3, GSK3ß, and SRPK1 significantly decreased endogenous Rac1b levels. Although knockdown of AKT2 and AKT3 affected only Rac1b protein levels suggesting a post-splicing effect, the depletion of GSK3ß or SRPK1 decreased Rac1b alternative splicing, an effect mediated through changes in splicing factor SRSF1. In particular, the knockdown of SRPK1 or inhibition of its catalytic activity reduced phosphorylation and subsequent translocation of SRSF1 to the nucleus, limiting its availability to promote the inclusion of alternative exon 3b into the Rac1 pre-mRNA. Altogether, the data identify SRSF1 as a prime regulator of Rac1b expression in colorectal cells and provide further mechanistic insight into how the regulation of alternative splicing events by protein kinases can contribute to sustain tumor cell survival.


Assuntos
Processamento Alternativo/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Western Blotting , Núcleo Celular/genética , Neoplasias Colorretais/metabolismo , Éxons/genética , Imunofluorescência , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Microscopia de Fluorescência , Proteínas Nucleares/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Processamento de Serina-Arginina , Transdução de Sinais , Células Tumorais Cultivadas , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Oncotarget ; 11(47): 4421-4437, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33315986

RESUMO

A major risk factor promoting tumor development is chronic inflammation and the use of nonsteroidal anti-inflammatory drugs (NSAID), including ibuprofen, can decrease the risk of developing various types of cancer, including colorectal cancer (CRC). Although the molecular mechanism behind the antitumor properties of NSAIDs has been largely attributed to inhibition of cyclooxygenases (COXs), several studies have shown that the chemopreventive properties of ibuprofen also involve multiple COX-independent effects. One example is its ability to inhibit the alternative splicing event generating RAC1B, which is overexpressed in a specific subset of BRAF-mutated colorectal tumors and sustains cell survival. Here we describe the mechanism by which ibuprofen prevents RAC1B alternative splicing in a BRAF mutant CRC cell line: it leads to decreased translocation of SRPK1 and SRSF1 to the nucleus and is regulated by a WNK1/GSK3ß/SRPK1 protein kinase complex. Surprisingly, we demonstrate that ibuprofen does not inhibit the activity of any of the involved kinases but rather promotes disassembly of this regulatory complex, exposing GSK3ß serine 9 to inhibitory phosphorylation, namely by AKT, which results in nuclear exclusion of SRPK1 and SRSF1 hypophosphorylation. The data shed new light on the biochemical mechanisms behind ibuprofen's action on alternative spliced RAC1B and may support its use in personalized approaches to CRC therapy or chemoprevention regimens.

7.
Cancer Lett ; 369(2): 368-75, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26341689

RESUMO

Mutations in the BRAF oncogene have been identified as a tumor-initiating genetic event in mainly melanoma, thyroid and colon cancer, resulting in an initial proliferative stimulus that is followed by a growth arrest period known as oncogene-induced senescence (OIS). It remains unknown what triggers subsequent escape from OIS to allow further tumor progression. A previous analysis revealed that around 80% of colorectal tumors carrying a mutation in BRAF also overexpress splice variant Rac1b. We used normal NCM460 colonocytes as a model to express oncogenic B-Raf-V600E in the presence or absence of co-transfected Rac1b and then analyzed the effect on expression of senescence markers. When oncogenic B-Raf-V600E was expressed we observed the induction of the senescence-associated ß-galactosidase and of the cell-cycle inhibitors p14, p15 and p21 whereas proliferation marker Ki67 was suppressed. Upon co-expression of splice variant Rac1b, but not of Rac1, the B-Raf-induced senescence phenotype was reverted and expression of the cell-cycle inhibitors downregulated in a reactive oxygen-species dependent manner. We thus provide evidence that co-expression of splice variant Rac1b counteracts B-Raf-induced senescence, indicating the selection for increased Rac1b expression as one potential mechanism by which colorectal tumor cells can escape from B-Raf-induced OIS.


Assuntos
Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas rac1 de Ligação ao GTP/genética , Linhagem Celular Tumoral , Senescência Celular , Neoplasias Colorretais/patologia , Progressão da Doença , Humanos , Transdução de Sinais , Transfecção , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA