Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cochrane Database Syst Rev ; 11: CD008643, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014846

RESUMO

EDITORIAL NOTE: See https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD014461.pub2/full for a more recent review that covers this topic and has superseded this review. BACKGROUND: Low-back pain (LBP) is a common condition seen in primary care. A principal aim during a clinical examination is to identify patients with a higher likelihood of underlying serious pathology, such as vertebral fracture, who may require additional investigation and specific treatment. All 'evidence-based' clinical practice guidelines recommend the use of red flags to screen for serious causes of back pain. However, it remains unclear if the diagnostic accuracy of red flags is sufficient to support this recommendation. OBJECTIVES: To assess the diagnostic accuracy of red flags obtained in a clinical history or physical examination to screen for vertebral fracture in patients presenting with LBP. SEARCH METHODS: Electronic databases were searched for primary studies between the earliest date and 7 March 2012. Forward and backward citation searching of eligible studies was also conducted. SELECTION CRITERIA: Studies were considered if they compared the results of any aspect of the history or test conducted in the physical examination of patients presenting for LBP or examination of the lumbar spine, with a reference standard (diagnostic imaging). The selection criteria were independently applied by two review authors. DATA COLLECTION AND ANALYSIS: Three review authors independently conducted 'Risk of bias' assessment and data extraction. Risk of bias was assessed using the 11-item QUADAS tool. Characteristics of studies, patients, index tests and reference standards were extracted. Where available, raw data were used to calculate sensitivity and specificity with 95% confidence intervals (CI). Due to the heterogeneity of studies and tests, statistical pooling was not appropriate and the analysis for the review was descriptive only. Likelihood ratios for each test were calculated and used as an indication of clinical usefulness. MAIN RESULTS: Eight studies set in primary (four), secondary (one) and tertiary care (accident and emergency = three) were included in the review. Overall, the risk of bias of studies was moderate with high risk of selection and verification bias the predominant flaws. Reporting of index and reference tests was poor. The prevalence of vertebral fracture in accident and emergency settings ranged from 6.5% to 11% and in primary care from 0.7% to 4.5%. There were 29 groups of index tests investigated however, only two featured in more than two studies. Descriptive analyses revealed that three red flags in primary care were potentially useful with meaningful positive likelihood ratios (LR+) but mostly imprecise estimates (significant trauma, older age, corticosteroid use; LR+ point estimate ranging 3.42 to 12.85, 3.69 to 9.39, 3.97 to 48.50 respectively). One red flag in tertiary care appeared informative (contusion/abrasion; LR+ 31.09, 95% CI 18.25 to 52.96). The results of combined tests appeared more informative than individual red flags with LR+ estimates generally greater in magnitude and precision. AUTHORS' CONCLUSIONS: The available evidence does not support the use of many red flags to specifically screen for vertebral fracture in patients presenting for LBP. Based on evidence from single studies, few individual red flags appear informative as most have poor diagnostic accuracy as indicated by imprecise estimates of likelihood ratios. When combinations of red flags were used the performance appeared to improve. From the limited evidence, the findings give rise to a weak recommendation that a combination of a small subset of red flags may be useful to screen for vertebral fracture. It should also be noted that many red flags have high false positive rates; and if acted upon uncritically there would be consequences for the cost of management and outcomes of patients with LBP. Further research should focus on appropriate sets of red flags and adequate reporting of both index and reference tests.


Assuntos
Dor Lombar , Fraturas da Coluna Vertebral , Humanos , Fraturas da Coluna Vertebral/complicações , Fraturas da Coluna Vertebral/diagnóstico , Dor Lombar/diagnóstico , Dor Lombar/etiologia , Exame Físico , Sensibilidade e Especificidade
2.
Cochrane Database Syst Rev ; 6: CD013881, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260086

RESUMO

BACKGROUND: It has been reported that people with COVID-19 and pre-existing autoantibodies against type I interferons are likely to develop an inflammatory cytokine storm responsible for severe respiratory symptoms. Since interleukin 6 (IL-6) is one of the cytokines released during this inflammatory process, IL-6 blocking agents have been used for treating people with severe COVID-19. OBJECTIVES: To update the evidence on the effectiveness and safety of IL-6 blocking agents compared to standard care alone or to a placebo for people with COVID-19. SEARCH METHODS: We searched the World Health Organization (WHO) International Clinical Trials Registry Platform, the Living OVerview of Evidence (L·OVE) platform, and the Cochrane COVID-19 Study Register to identify studies on 7 June 2022. SELECTION CRITERIA: We included randomized controlled trials (RCTs) evaluating IL-6 blocking agents compared to standard care alone or to placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: Pairs of researchers independently conducted study selection, extracted data and assessed risk of bias. We assessed the certainty of evidence using the GRADE approach for all critical and important outcomes. In this update we amended our protocol to update the methods used for grading evidence by establishing minimal important differences for the critical outcomes. MAIN RESULTS: This update includes 22 additional trials, for a total of 32 trials including 12,160 randomized participants all hospitalized for COVID-19 disease. We identified a further 17 registered RCTs evaluating IL-6 blocking agents without results available as of 7 June 2022.  The mean age range varied from 56 to 75 years; 66.2% (8051/12,160) of enrolled participants were men. One-third (11/32) of included trials were placebo-controlled. Twenty-two were published in peer-reviewed journals, three were reported as preprints, two trials had results posted only on registries, and results from five trials were retrieved from another meta-analysis. Eight were funded by pharmaceutical companies.  Twenty-six included studies were multicenter trials; four were multinational and 22 took place in single countries. Recruitment of participants occurred between February 2020 and June 2021, with a mean enrollment duration of 21 weeks (range 1 to 54 weeks). Nineteen trials (60%) had a follow-up of 60 days or more. Disease severity ranged from mild to critical disease. The proportion of participants who were intubated at study inclusion also varied from 5% to 95%. Only six trials reported vaccination status; there were no vaccinated participants included in these trials, and 17 trials were conducted before vaccination was rolled out. We assessed a total of six treatments, each compared to placebo or standard care. Twenty trials assessed tocilizumab, nine assessed sarilumab, and two assessed clazakizumab. Only one trial was included for each of the other IL-6 blocking agents (siltuximab, olokizumab, and levilimab). Two trials assessed more than one treatment. Efficacy and safety of tocilizumab and sarilumab compared to standard care or placebo for treating COVID-19 At day (D) 28, tocilizumab and sarilumab probably result in little or no increase in clinical improvement (tocilizumab: risk ratio (RR) 1.05, 95% confidence interval (CI) 1.00 to 1.11; 15 RCTs, 6116 participants; moderate-certainty evidence; sarilumab: RR 0.99, 95% CI 0.94 to 1.05; 7 RCTs, 2425 participants; moderate-certainty evidence). For clinical improvement at ≥ D60, the certainty of evidence is very low for both tocilizumab (RR 1.10, 95% CI 0.81 to 1.48; 1 RCT, 97 participants; very low-certainty evidence) and sarilumab (RR 1.22, 95% CI 0.91 to 1.63; 2 RCTs, 239 participants; very low-certainty evidence). The effect of tocilizumab on the proportion of participants with a WHO Clinical Progression Score (WHO-CPS) of level 7 or above remains uncertain at D28 (RR 0.90, 95% CI 0.72 to 1.12; 13 RCTs, 2117 participants; low-certainty evidence) and that for sarilumab very uncertain (RR 1.10, 95% CI 0.90 to 1.33; 5 RCTs, 886 participants; very low-certainty evidence). Tocilizumab reduces all cause-mortality at D28 compared to standard care/placebo (RR 0.88, 95% CI 0.81 to 0.94; 18 RCTs, 7428 participants; high-certainty evidence). The evidence about the effect of sarilumab on this outcome is very uncertain (RR 1.06, 95% CI 0.86 to 1.30; 9 RCTs, 3305 participants; very low-certainty evidence). The evidence is uncertain for all cause-mortality at ≥ D60 for tocilizumab (RR 0.91, 95% CI 0.80 to 1.04; 9 RCTs, 2775 participants; low-certainty evidence) and very uncertain for sarilumab (RR 0.95, 95% CI 0.84 to 1.07; 6 RCTs, 3379 participants; very low-certainty evidence). Tocilizumab probably results in little to no difference in the risk of adverse events (RR 1.03, 95% CI 0.95 to 1.12; 9 RCTs, 1811 participants; moderate-certainty evidence). The evidence about adverse events for sarilumab is uncertain (RR 1.12, 95% CI 0.97 to 1.28; 4 RCT, 860 participants; low-certainty evidence).  The evidence about serious adverse events is very uncertain for tocilizumab (RR 0.93, 95% CI 0.81 to 1.07; 16 RCTs; 2974 participants; very low-certainty evidence) and uncertain for sarilumab (RR 1.09, 95% CI 0.97 to 1.21; 6 RCTs; 2936 participants; low-certainty evidence). Efficacy and safety of clazakizumab, olokizumab, siltuximab and levilimab compared to standard care or placebo for treating COVID-19 The evidence about the effects of clazakizumab, olokizumab, siltuximab, and levilimab comes from only one or two studies for each blocking agent, and is uncertain or very uncertain. AUTHORS' CONCLUSIONS: In hospitalized people with COVID-19, results show a beneficial effect of tocilizumab on all-cause mortality in the short term and probably little or no difference in the risk of adverse events compared to standard care alone or placebo. Nevertheless, both tocilizumab and sarilumab probably result in little or no increase in clinical improvement at D28. Evidence for an effect of sarilumab and the other IL-6 blocking agents on critical outcomes is uncertain or very uncertain. Most of the trials included in our review were done before the waves of different variants of concern and before vaccination was rolled out on a large scale. An additional 17 RCTs of IL-6 blocking agents are currently registered with no results yet reported. The number of pending studies and the number of participants planned is low. Consequently, we will not publish further updates of this review.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Interleucina-6 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Viés , Citocinas , Interleucina-6/antagonistas & inibidores
3.
Mov Disord ; 37(7): 1360-1374, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35791767

RESUMO

BACKGROUND AND PURPOSE: This update of the treatment guidelines was commissioned by the European Academy of Neurology and the European section of the Movement Disorder Society. Although these treatments are initiated usually in specialized centers, the general neurologist should know the therapies and their place in the treatment pathway. METHODS: Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to assess the spectrum of approved interventions including deep brain stimulation (DBS) or brain lesioning with different techniques (radiofrequency thermocoagulation, radiosurgery, magnetic resonance imaging-guided focused ultrasound surgery [MRgFUS] of the following targets: subthalamic nucleus [STN], ventrolateral thalamus, and pallidum internum [GPi]). Continuous delivery of medication subcutaneously (apomorphine pump) or through percutaneous ileostomy (intrajejunal levodopa/carbidopa pump [LCIG]) was also included. Changes in motor features, health-related quality of life (QoL), adverse effects, and further outcome parameters were evaluated. Recommendations were based on high-class evidence and graded in three gradations. If only lower class evidence was available but the topic was felt to be of high importance, clinical consensus of the guideline task force was gathered. RESULTS: Two research questions have been answered with eight recommendations and five clinical consensus statements. Invasive therapies are reserved for specific patient groups and clinical situations mostly in the advanced stage of Parkinson's disease (PD). Interventions may be considered only for special patient profiles, which are mentioned in the text. Therapy effects are reported as change compared with current medical treatment. STN-DBS is the best-studied intervention for advanced PD with fluctuations not satisfactorily controlled with oral medications; it improves motor symptoms and QoL, and treatment should be offered to eligible patients. GPi-DBS can also be offered. For early PD with early fluctuations, STN-DBS is likely to improve motor symptoms, and QoL and can be offered. DBS should not be offered to people with early PD without fluctuations. LCIG and an apomorphine pump can be considered for advanced PD with fluctuations not sufficiently managed with oral treatments. Unilateral MRgFUS of the STN can be considered for distinctly unilateral PD within registries. Clinical consensus was reached for the following statements: Radiosurgery with gamma radiation cannot be recommended, unilateral radiofrequency thermocoagulation of the pallidum for advanced PD with treatment-resistant fluctuations and unilateral radiofrequency thermocoagulation of the thalamus for resistant tremor can be recommended if other options are not available, unilateral MRgFUS of the thalamus for medication-resistant tremor of PD can be considered only within registries, and unilateral MRgFUS of the pallidum is not recommended. CONCLUSIONS: Evidence for invasive therapies in PD is heterogeneous. Only some of these therapies have a strong scientific basis. They differ in their profile of effects and have been tested only for specific patient groups. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Neurologia , Doença de Parkinson , Apomorfina/uso terapêutico , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Tremor/terapia
4.
Eur J Neurol ; 29(9): 2580-2595, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35791766

RESUMO

BACKGROUND AND PURPOSE: This update of the treatment guidelines was commissioned by the European Academy of Neurology and the European section of the Movement Disorder Society. Although these treatments are initiated usually in specialized centers, the general neurologist and general practitioners taking care of PD patients should know the therapies and their place in the treatment pathway. METHODS: Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to assess the spectrum of approved interventions including deep brain stimulation (DBS) or brain lesioning with different techniques (radiofrequency thermocoagulation, radiosurgery, magnetic resonance imaging-guided focused ultrasound surgery [MRgFUS] of the following targets: subthalamic nucleus [STN], ventrolateral thalamus, and pallidum internum [GPi]). Continuous delivery of medication subcutaneously (apomorphine pump) or through percutaneous ileostomy (intrajejunal levodopa/carbidopa pump [LCIG]) was also included. Changes in motor features, health-related quality of life (QoL), adverse effects, and further outcome parameters were evaluated. Recommendations were based on high-class evidence and graded in three gradations. If only lower class evidence was available but the topic was felt to be of high importance, clinical consensus of the guideline task force was gathered. RESULTS: Two research questions have been answered with eight recommendations and five clinical consensus statements. Invasive therapies are reserved for specific patient groups and clinical situations mostly in the advanced stage of Parkinson's disease (PD). Interventions may be considered only for special patient profiles, which are mentioned in the text. Therapy effects are reported as change compared with current medical treatment. STN-DBS is the best-studied intervention for advanced PD with fluctuations not satisfactorily controlled with oral medications; it improves motor symptoms and QoL, and treatment should be offered to eligible patients. GPi-DBS can also be offered. For early PD with early fluctuations, STN-DBS is likely to improve motor symptoms, and QoL and can be offered. DBS should not be offered to people with early PD without fluctuations. LCIG and an apomorphine pump can be considered for advanced PD with fluctuations not sufficiently managed with oral treatments. Unilateral MRgFUS of the STN can be considered for distinctly unilateral PD within registries. Clinical consensus was reached for the following statements: Radiosurgery with gamma radiation cannot be recommended, unilateral radiofrequency thermocoagulation of the pallidum for advanced PD with treatment-resistant fluctuations and unilateral radiofrequency thermocoagulation of the thalamus for resistant tremor can be recommended if other options are not available, unilateral MRgFUS of the thalamus for medication-resistant tremor of PD can be considered only within registries, and unilateral MRgFUS of the pallidum is not recommended. CONCLUSIONS: Evidence for invasive therapies in PD is heterogeneous. Only some of these therapies have a strong scientific basis. They differ in their profile of effects and have been tested only for specific patient groups.


Assuntos
Estimulação Encefálica Profunda , Neurologia , Doença de Parkinson , Apomorfina/uso terapêutico , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Tremor
5.
Cochrane Database Syst Rev ; 10: CD012450, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269125

RESUMO

BACKGROUND: Corticosteroids are medications with anti-inflammatory and immunosuppressant properties. Systemic corticosteroids administered through the oral, intravenous, or intramuscular routes have been used to treat various types of low back pain, including radicular back pain (not due to spinal stenosis), non-radicular back pain, and spinal stenosis. However, there is uncertainty about the benefits and harms of systemic corticosteroids for low back pain. OBJECTIVES: To evaluate the benefits and harms of systemic corticosteroids versus placebo or no corticosteroid for radicular low back pain, non-radicular low back pain, and symptomatic spinal stenosis in adults. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was September 2021. SELECTION CRITERIA: We included randomized and quasi-randomized trials in adults of systematic corticosteroids versus placebo or no corticosteroid. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. The major outcomes were pain, function, need for surgery, serious adverse effect, and presence of hyperglycemia. The minor outcomes were quality of life, successful outcomes, non-serious adverse events, and withdrawal due to adverse events. We used GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS: Thirteen trials (1047 participants) met the inclusion criteria. Nine trials included participants with radicular low back pain, two trial with low back pain, and two trials with spinal stenosis. All trials blinded participants to receipt of systemic corticosteroids. Seven trials were at low risk of bias, five at unclear risk, and one at high risk of selection bias. Two trials were at high risk of attrition bias. Doses and duration of systemic corticosteroid therapy varied. Radicular low back pain For radicular low back pain, moderate-certainty evidence indicated that systemic corticosteroids probably slightly decrease pain versus placebo at short-term follow-up (mean difference (MD) 0.56 points better, 95% confidence interval (CI) 1.08 to 0.04 on a 0 to 10 scale) and may slightly increase the likelihood of experiencing improvement in pain at short-term follow-up (risk ratio (RR) 1.21, 95% CI 0.88 to 1.66; absolute effect 5% better (95% CI 5% worse to 15% better). Systemic corticosteroids may not improve function at short-term follow-up (standardized mean difference (SMD) 0.14 better; range 0.49 better to 0.21 worse) and probably increase the likelihood of improvement in function at short-term follow-up (RR 1.52, 95% CI 1.22 to 1.91; absolute effect 19% better, 95% CI 8% better to 30% better). Systemic corticosteroids were associated with greater improvement in function versus placebo at long-term follow-up (MD -7.40, 95% CI -12.55 to -2.25 on the 0 to 100 Oswestry Disability Index) and greater likelihood of functional improvement (RR 1.29, 95% CI 1.06 to 1.56), based on a single trial. There was no difference in likelihood of surgery (RR 1.00, 95% CI 0.68 to 1.47). Evidence indicated that systemic corticosteroids (administered as a single dose or as a short course of therapy) are not associated with increased risk of any adverse event, serious adverse events, withdrawal due to adverse events, or hyperglycemia, but estimates were imprecise as some trials did not report harms, and harms reporting was suboptimal in trials that did provide data. Limitations included variability across trials in interventions (e.g. corticosteroid used, dose and duration of treatment), clinical settings, and participants (e.g. duration of symptoms, methods for diagnosis); limited utility of subgroup analyses due to small numbers of trials; methodologic limitations or suboptimal reporting of methods by some trials; and too few trials to formally assess for publication bias using graphical or statistical tests for small sample effects. Non-radicular low back pain Evidence on systemic corticosteroids versus placebo for non-radicular pain was limited and suggested that systemic corticosteroids may be associated with slightly worse short-term pain but slightly better function. Spinal stenosis For spinal stenosis, limited evidence indicated that systemic corticosteroids are probably no more effective than placebo for short-term pain or function. AUTHORS' CONCLUSIONS: Systemic corticosteroids appear to be slightly effective at improving short-term pain and function in people with radicular low back pain not due to spinal stenosis, and might slightly improve long-term function. The effects of systemic corticosteroids in people with non-radicular low back pain are unclear and systemic corticosteroids are probably ineffective for spinal stenosis. A single dose or short course of systemic corticosteroids for low back pain does not appear to cause serious harms, but evidence is limited.


Assuntos
Hiperglicemia , Dor Lombar , Estenose Espinal , Adulto , Humanos , Corticosteroides/efeitos adversos , Imunossupressores , Dor Lombar/tratamento farmacológico , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Cochrane Database Syst Rev ; 1: CD015308, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080773

RESUMO

BACKGROUND: Interleukin-1 (IL-1) blocking agents have been used for treating severe coronavirus disease 2019 (COVID-19), on the premise that their immunomodulatory effect might be beneficial in people with COVID-19. OBJECTIVES: To assess the effects of IL-1 blocking agents compared with standard care alone or with placebo on effectiveness and safety outcomes in people with COVID-19. We will update this assessment regularly. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L-OVE Platform (search date 5 November 2021). These sources are maintained through regular searches of MEDLINE, Embase, CENTRAL, trial registers and other sources. We also checked the World Health Organization International Clinical Trials Registry Platform, regulatory agency websites, Retraction Watch (search date 3 November 2021). SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating IL-1 blocking agents compared with standard care alone or with placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: We followed Cochrane methodology. The protocol was amended to reduce the number of outcomes considered. Two researchers independently screened and extracted data and assessed the risk of bias with the Cochrane Risk of Bias 2 tool. We rated the certainty of evidence using the GRADE approach for the critical outcomes of clinical improvement (Day 28; ≥ D60); WHO Clinical Progression Score of level 7 or above (i.e. the proportion of participants with mechanical ventilation +/- additional organ support OR death) (D28; ≥ D60); all-cause mortality (D28; ≥ D60); incidence of any adverse events; and incidence of serious adverse events. MAIN RESULTS: We identified four RCTs of anakinra (three published in peer-reviewed journals, one reported as a preprint) and two RCTs of canakinumab (published in peer-reviewed journals). All trials were multicentre (2 to 133 centres). Two trials stopped early (one due to futility and one as the trigger for inferiority was met). The median/mean age range varied from 58 to 68 years; the proportion of men varied from 58% to 77%. All participants were hospitalised; 67% to 100% were on oxygen at baseline but not intubated; between 0% and 33% were intubated at baseline. We identified a further 16 registered trials with no results available, of which 15 assessed anakinra (four completed, four terminated, five ongoing, three not recruiting) and one (completed) trial assessed canakinumab. Effectiveness of anakinra for people with COVID-19 Anakinra probably results in little or no increase in clinical improvement at D28 (risk ratio (RR) 1.08, 95% confidence interval (CI) 0.97 to 1.20; 3 RCTs, 837 participants; absolute effect: 59 more per 1000 (from 22 fewer to 147 more); moderate-certainty evidence. The evidence is uncertain about an effect of anakinra on 1) the proportion of participants with a WHO Clinical Progression Score of level 7 or above at D28 (RR 0.67, 95% CI 0.36 to 1.22; 2 RCTs, 722 participants; absolute effect: 55 fewer per 1000 (from 107 fewer to 37 more); low-certainty evidence) and ≥ D60 (RR 0.54, 95% CI 0.30 to 0.96; 1 RCT, 606 participants; absolute effect: 47 fewer per 1000 (from 72 fewer to 4 fewer) low-certainty evidence); and 2) all-cause mortality at D28 (RR 0.69, 95% CI 0.34 to 1.39; 2 RCTs, 722 participants; absolute effect: 32 fewer per 1000 (from 68 fewer to 40 more); low-certainty evidence).  The evidence is very uncertain about an effect of anakinra on 1) the proportion of participants with clinical improvement at ≥ D60 (RR 0.93, 95% CI 0.78 to 1.12; 1 RCT, 115 participants; absolute effect: 59 fewer per 1000 (from 186 fewer to 102 more); very low-certainty evidence); and 2) all-cause mortality at ≥ D60 (RR 1.03, 95% CI 0.68 to 1.56; 4 RCTs, 1633 participants; absolute effect: 8 more per 1000 (from 84 fewer to 147 more); very low-certainty evidence). Safety of anakinra for people with COVID-19 Anakinra probably results in little or no increase in adverse events (RR 1.02, 95% CI 0.94 to 1.11; 2 RCTs, 722 participants; absolute effect: 14 more per 1000 (from 43 fewer to 78 more); moderate-certainty evidence).  The evidence is uncertain regarding an effect of anakinra on serious adverse events (RR 0.95, 95% CI 0.58 to 1.56; 2 RCTs, 722 participants; absolute effect: 12 fewer per 1000 (from 104 fewer to 138 more); low-certainty evidence). Effectiveness of canakinumab for people with COVID-19 Canakinumab probably results in little or no increase in clinical improvement at D28 (RR 1.05, 95% CI 0.96 to 1.14; 2 RCTs, 499 participants; absolute effect: 42 more per 1000 (from 33 fewer to 116 more); moderate-certainty evidence).  The evidence of an effect of canakinumab is uncertain on 1) the proportion of participants with a WHO Clinical Progression Score of level 7 or above at D28 (RR 0.72, 95% CI 0.44 to 1.20; 2 RCTs, 499 participants; absolute effect: 35 fewer per 1000 (from 69 fewer to 25 more); low-certainty evidence); and 2) all-cause mortality at D28 (RR:0.75; 95% CI 0.39 to 1.42); 2 RCTs, 499 participants; absolute effect: 20 fewer per 1000 (from 48 fewer to 33 more); low-certainty evidence).  The evidence is very uncertain about an effect of canakinumab on all-cause mortality at ≥ D60 (RR 0.55, 95% CI 0.16 to 1.91; 1 RCT, 45 participants; absolute effect: 112 fewer per 1000 (from 210 fewer to 227 more); very low-certainty evidence). Safety of canakinumab for people with COVID-19 Canakinumab probably results in little or no increase in adverse events (RR 1.02; 95% CI 0.86 to 1.21; 1 RCT, 454 participants; absolute effect: 11 more per 1000 (from 74 fewer to 111 more); moderate-certainty evidence). The evidence of an effect of canakinumab on serious adverse events is uncertain (RR 0.80, 95% CI 0.57 to 1.13; 2 RCTs, 499 participants; absolute effect: 44 fewer per 1000 (from 94 fewer to 28 more); low-certainty evidence). AUTHORS' CONCLUSIONS: Overall, we did not find evidence for an important beneficial effect of IL-1 blocking agents. The evidence is uncertain or very uncertain for several outcomes. Sixteen trials of anakinra and canakinumab with no results are currently registered, of which four are completed, and four terminated. The findings of this review are updated on the COVID-NMA platform (covid-nma.com).


Assuntos
Tratamento Farmacológico da COVID-19 , Interleucina-1/antagonistas & inibidores , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração Artificial
7.
Cochrane Database Syst Rev ; 12: CD015477, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36473651

RESUMO

BACKGROUND: Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally.  OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes.  We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs).  MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available.  This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS: Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Humanos , Pessoa de Meia-Idade , Idoso , Adolescente , COVID-19/prevenção & controle , SARS-CoV-2
8.
Cochrane Database Syst Rev ; 11: CD008521, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34788488

RESUMO

BACKGROUND: Rotavirus is a common cause of diarrhoea, diarrhoea-related hospital admissions, and diarrhoea-related deaths worldwide. Rotavirus vaccines prequalified by the World Health Organization (WHO) include Rotarix (GlaxoSmithKline), RotaTeq (Merck), and, more recently, Rotasiil (Serum Institute of India Ltd.), and Rotavac (Bharat Biotech Ltd.). OBJECTIVES: To evaluate rotavirus vaccines prequalified by the WHO for their efficacy and safety in children. SEARCH METHODS: On 30 November 2020, we searched PubMed, the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, Science Citation Index Expanded, Social Sciences Citation Index, Conference Proceedings Citation Index-Science, Conference Proceedings Citation Index-Social Science & Humanities. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies, and relevant systematic reviews. SELECTION CRITERIA: We selected randomized controlled trials (RCTs) conducted in children that compared rotavirus vaccines prequalified for use by the WHO with either placebo or no intervention. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial eligibility and assessed risk of bias. One author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analyses by under-five country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS: Sixty trials met the inclusion criteria and enrolled a total of 228,233 participants. Thirty-six trials (119,114 participants) assessed Rotarix, 15 trials RotaTeq (88,934 participants), five trials Rotasiil (11,753 participants), and four trials Rotavac (8432 participants). Rotarix Infants vaccinated and followed up for the first year of life In low-mortality countries, Rotarix prevented 93% of severe rotavirus diarrhoea cases (14,976 participants, 4 trials; high-certainty evidence), and 52% of severe all-cause diarrhoea cases (3874 participants, 1 trial; moderate-certainty evidence).  In medium-mortality countries, Rotarix prevented 79% of severe rotavirus diarrhoea cases (31,671 participants, 4 trials; high-certainty evidence), and 36% of severe all-cause diarrhoea cases (26,479 participants, 2 trials; high-certainty evidence).  In high-mortality countries, Rotarix prevented 58% of severe rotavirus diarrhoea cases (15,882 participants, 4 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, Rotarix prevented 90% of severe rotavirus diarrhoea cases (18,145 participants, 6 trials; high-certainty evidence), and 51% of severe all-cause diarrhoea episodes (6269 participants, 2 trials; moderate-certainty evidence).   In medium-mortality countries, Rotarix prevented 77% of severe rotavirus diarrhoea cases (28,834 participants, 3 trials; high-certainty evidence), and 26% of severe all-cause diarrhoea cases (23,317 participants, 2 trials; moderate-certainty evidence).  In high-mortality countries, Rotarix prevented 35% of severe rotavirus diarrhoea cases (13,768 participants, 2 trials; moderate-certainty evidence), and 17% of severe all-cause diarrhoea cases (2764 participants, 1 trial; high-certainty evidence). RotaTeq Infants vaccinated and followed up for the first year of life In low-mortality countries, RotaTeq prevented 97% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence).  In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence).  In high-mortality countries, RotaTeq prevented 57% of severe rotavirus diarrhoea cases (6775 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (1 trial, 4085 participants; moderate-certainty evidence).  Children vaccinated and followed up for two years In low-mortality countries, RotaTeq prevented 96% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence).  In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence).  In high-mortality countries, RotaTeq prevented 44% of severe rotavirus diarrhoea cases (6744 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (5977 participants, 2 trials; high-certainty evidence).  We did not identify RotaTeq studies reporting on severe all-cause diarrhoea in low- or medium-mortality countries. Rotasiil Rotasiil has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotasiil prevented 48% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotasiil prevented 44% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Rotavac Rotavac has not been assessed in any RCT in countries with low or medium child mortality.  Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotavac prevented 57% of severe rotavirus diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotavac prevented 54% of severe rotavirus diarrhoea cases (6541 participants, 1 trial; moderate-certainty evidence); no Rotavac studies have reported on severe all-cause diarrhoea at two-years follow-up. Safety No increased risk of serious adverse events (SAEs) was detected with Rotarix (103,714 participants, 31 trials; high-certainty evidence), RotaTeq (82,502 participants, 14 trials; moderate to high-certainty evidence), Rotasiil (11,646 participants, 3 trials; high-certainty evidence), or Rotavac (8210 participants, 3 trials; moderate-certainty evidence). Deaths were infrequent and the analysis had insufficient evidence to show an effect on all-cause mortality. Intussusception was rare.  AUTHORS' CONCLUSIONS: Rotarix, RotaTeq, Rotasiil, and Rotavac prevent episodes of rotavirus diarrhoea. The relative effect estimate is smaller in high-mortality than in low-mortality countries, but more episodes are prevented in high-mortality settings as the baseline risk is higher. In high-mortality countries some results suggest lower efficacy in the second year. We found no increased risk of serious adverse events, including intussusception, from any of the prequalified rotavirus vaccines.


Assuntos
Intussuscepção , Infecções por Rotavirus , Rotavirus , Criança , Mortalidade da Criança , Diarreia/prevenção & controle , Humanos , Lactente , Infecções por Rotavirus/prevenção & controle
9.
Cochrane Database Syst Rev ; 7: CD012944, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34314020

RESUMO

BACKGROUND: The ubiquity of mobile devices has made it possible for clinical decision-support systems (CDSS) to become available to healthcare providers on handheld devices at the point-of-care, including in low- and middle-income countries. The use of CDSS by providers can potentially improve adherence to treatment protocols and patient outcomes. However, the evidence on the effect of the use of CDSS on mobile devices needs to be synthesized. This review was carried out to support a World Health Organization (WHO) guideline that aimed to inform investments on the use of decision-support tools on digital devices to strengthen primary healthcare. OBJECTIVES: To assess the effects of digital clinical decision-support systems (CDSS) accessible via mobile devices by primary healthcare providers in the context of primary care settings. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, Global Index Medicus, POPLINE, and two trial registries from 1 January 2000 to 9 October 2020. We conducted a grey literature search using mHealthevidence.org and issued a call for papers through popular digital health communities of practice. Finally, we conducted citation searches of included studies. SELECTION CRITERIA: Study design: we included randomized trials, including full-text studies, conference abstracts, and unpublished data irrespective of publication status or language of publication.  Types of participants: we included studies of all cadres of healthcare providers, including lay health workers and other individuals (administrative, managerial, and supervisory staff) involved in the delivery of primary healthcare services using clinical decision-support tools; and studies of clients or patients receiving care from primary healthcare providers using digital decision-support tools. Types of interventions: we included studies comparing digital CDSS accessible via mobile devices with non-digital CDSS or no intervention, in the context of primary care. CDSS could include clinical protocols, checklists, and other job-aids which supported risk prioritization of patients. Mobile devices included mobile phones of any type (but not analogue landline telephones), as well as tablets, personal digital assistants, and smartphones. We excluded studies where digital CDSS were used on laptops or integrated with electronic medical records or other types of longitudinal tracking of clients. DATA COLLECTION AND ANALYSIS: A machine learning classifier that gave each record a probability score of being a randomized trial screened all search results. Two review authors screened titles and abstracts of studies with more than 10% probability of being a randomized trial, and one review author screened those with less than 10% probability of being a randomized trial. We followed standard methodological procedures expected by Cochrane and the Effective Practice and Organisation of Care group. We used the GRADE approach to assess the certainty of the evidence for the most important outcomes. MAIN RESULTS: Eight randomized trials across varying healthcare contexts in the USA,. India, China, Guatemala, Ghana, and Kenya, met our inclusion criteria. A range of healthcare providers (facility and community-based, formally trained, and lay workers) used digital CDSS. Care was provided for the management of specific conditions such as cardiovascular disease, gastrointestinal risk assessment, and maternal and child health. The certainty of evidence ranged from very low to moderate, and we often downgraded evidence for risk of bias and imprecision. We are uncertain of the effect of this intervention on providers' adherence to recommended practice due to the very low certainty evidence (2 studies, 185 participants). The effect of the intervention on patients' and clients' health behaviours such as smoking and treatment adherence is mixed, with substantial variation across outcomes for similar types of behaviour (2 studies, 2262 participants). The intervention probably makes little or no difference to smoking rates among people at risk of cardiovascular disease but probably increases other types of desired behaviour among patients, such as adherence to treatment. The effect of the intervention on patients'/clients' health status and well-being  is also mixed (5 studies, 69,767 participants). It probably makes little or no difference to some types of health outcomes, but we are uncertain about other health outcomes, including maternal and neonatal deaths, due to very low-certainty evidence. The intervention may slightly improve patient or client acceptability and satisfaction (1 study, 187 participants). We found no studies that reported the time between the presentation of an illness and appropriate management, provider acceptability or satisfaction, resource use, or unintended consequences. AUTHORS' CONCLUSIONS: We are uncertain about the effectiveness of mobile phone-based decision-support tools on several outcomes, including adherence to recommended practice. None of the studies had a quality of care framework and focused only on specific health areas.   We need well-designed research that takes a systems lens to assess these issues.


Assuntos
Telefone Celular , Sistemas de Apoio a Decisões Clínicas , Atenção Primária à Saúde , Melhoria de Qualidade , Qualidade da Assistência à Saúde , Viés , Fidelidade a Diretrizes , Guias como Assunto , Comportamentos Relacionados com a Saúde , Pessoal de Saúde , Nível de Saúde , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
Cochrane Database Syst Rev ; 7: CD012909, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271590

RESUMO

BACKGROUND: Ministries of health, donors, and other decision-makers are exploring how they can use mobile technologies to acquire accurate and timely statistics on births and deaths. These stakeholders have called for evidence-based guidance on this topic. This review was carried out to support World Health Organization (WHO) recommendations on digital interventions for health system strengthening. OBJECTIVES: Primary objective: To assess the effects of birth notification and death notification via a mobile device, compared to standard practice. Secondary objectives: To describe the range of strategies used to implement birth and death notification via mobile devices and identify factors influencing the implementation of birth and death notification via mobile devices. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, the Global Health Library, and POPLINE (August 2, 2019). We searched two trial registries (August 2, 2019). We also searched Epistemonikos for related systematic reviews and potentially eligible primary studies (August 27, 2019). We conducted a grey literature search using mHealthevidence.org (August 15, 2017) and issued a call for papers through popular digital health communities of practice. Finally, we conducted citation searches of included studies in Web of Science and Google Scholar (May 15, 2020). We searched for studies published after 2000 in any language.  SELECTION CRITERIA: For the primary objective, we included individual and cluster-randomised trials; cross-over and stepped-wedge study designs; controlled before-after studies, provided they have at least two intervention sites and two control sites; and interrupted time series studies. For the secondary objectives, we included any study design, either quantitative, qualitative, or descriptive, that aimed to describe current strategies for birth and death notification via mobile devices; or to explore factors that influence the implementation of these strategies, including studies of acceptability or feasibility. For the primary objective, we included studies that compared birth and death notification via mobile devices with standard practice. For the secondary objectives, we included studies of birth and death notification via mobile device as long as we could extract data relevant to our secondary objectives. We included studies of all cadres of healthcare providers, including lay health workers; administrative, managerial, and supervisory staff; focal individuals at the village or community level; children whose births were being notified and their parents/caregivers; and individuals whose deaths were being notified and their relatives/caregivers. DATA COLLECTION AND ANALYSIS: For the primary objective, two authors independently screened all records, extracted data from the included studies and assessed risk of bias. For the analyses of the primary objective, we reported means and proportions, where appropriate. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the certainty of the evidence and we prepared a 'Summary of Findings' table. For the secondary objectives, two authors screened all records, one author extracted data from the included studies and assessed methodological limitations using the WEIRD tool and a second author checked the data and assessments. We carried out a framework analysis using the Supporting the Use of Research Evidence (SURE) framework to identify themes in the data. We used the GRADE-CERQual (Confidence in the Evidence from Reviews of Qualitative research) approach to assess our confidence in the evidence and we prepared a 'Summary of Qualitative Findings' table. MAIN RESULTS: For the primary objective, we included one study, which used a controlled before-after study design. The study was conducted in Lao People's Democratic Republic and assessed the effect of using mobile devices for birth notification on outcomes related to coverage and timeliness of Hepatitis B vaccination. However, we are uncertain of the effect of this approach on these outcomes because the certainty of this evidence was assessed as very low. The included study did not assess resource use or unintended consequences. For the primary objective, we did not identify any studies using mobile devices for death notification. For the secondary objective, we included 21 studies. All studies were conducted in low- or middle-income settings. They focussed on identification of births and deaths in rural, remote, or marginalised populations who are typically under-represented in civil registration processes or traditionally seen as having poor access to health services. The review identified several factors that could influence the implementation of birth-death notification via mobile device. These factors were tied to the health system, the person responsible for notifying, the community and families; and include: - Geographic barriers that could prevent people's access to birth-death notification and post-notification services - Access to health workers and other notifiers with enough training, supervision, support, and incentives - Monitoring systems that ensure the quality and timeliness of the birth and death data - Legal frameworks that allow births and deaths to be notified by mobile device and by different types of notifiers - Community awareness of the need to register births and deaths - Socio-cultural norms around birth and death - Government commitment - Cost to the system, to health workers and to families - Access to electricity and network connectivity, and compatibility with existing systems - Systems that protect data confidentiality We have low to moderate confidence in these findings. This was mainly because of concerns about methodological limitations and data adequacy. AUTHORS' CONCLUSIONS: We need more, well-designed studies of the effect of birth and death notification via mobile devices and on factors that may influence its implementation.


Assuntos
Declaração de Nascimento , Computadores de Mão , Atestado de Óbito , Viés , Estudos Controlados Antes e Depois , Acessibilidade aos Serviços de Saúde , Humanos , População Rural , Fatores de Tempo
11.
Cochrane Database Syst Rev ; 8: CD009149, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34352116

RESUMO

BACKGROUND: Community-based primary-level workers (PWs) are an important strategy for addressing gaps in mental health service delivery in low- and middle-income countries.  OBJECTIVES: To evaluate the effectiveness of PW-led treatments for persons with mental health symptoms in LMICs, compared to usual care.  SEARCH METHODS: MEDLINE, Embase, CENTRAL, ClinicalTrials.gov, ICTRP, reference lists (to 20 June 2019).   SELECTION CRITERIA: Randomised trials of PW-led or collaborative-care interventions treating people with mental health symptoms or their carers in LMICs.  PWs included: primary health professionals (PHPs), lay health workers (LHWs), community non-health professionals (CPs).  DATA COLLECTION AND ANALYSIS: Seven conditions were identified apriori and analysed by disorder and PW examining recovery, prevalence, symptom change, quality-of-life (QOL), functioning, service use (SU), and adverse events (AEs).  Risk ratios (RRs) were used for dichotomous outcomes; mean difference (MDs), standardised mean differences (SMDs), or mean change differences (MCDs) for continuous outcomes.  For SMDs, 0.20 to 0.49 represented small, 0.50 to 0.79 moderate, and ≥0.80 large clinical effects.  Analysis timepoints: T1 (<1 month), T2 (1-6 months), T3 ( >6 months) post-intervention.  MAIN RESULTS: Description of studies 95 trials (72 new since 2013) from 30 LMICs (25 trials from 13 LICs).  Risk of bias Most common: detection bias, attrition bias (efficacy), insufficient protection against contamination.  Intervention effects *Unless indicated, comparisons were usual care at T2.  "Probably", "may", or "uncertain" indicates "moderate", "low," or "very low" certainty evidence.   Adults with common mental disorders (CMDs) LHW-led interventions a. may increase recovery (2 trials, 308 participants; RR 1.29, 95%CI 1.06 to 1.56); b. may reduce prevalence (2 trials, 479 participants; RR 0.42, 95%CI 0.18 to 0.96); c. may reduce symptoms (4 trials, 798 participants; SMD -0.59, 95%CI -1.01 to -0.16); d. may improve QOL (1 trial, 521 participants; SMD 0.51, 95%CI 0.34 to 0.69); e. may slightly reduce functional impairment (3 trials, 1399 participants; SMD -0.47, 95%CI -0.8 to -0.15); f. may reduce AEs (risk of suicide ideation/attempts); g. may have uncertain effects on SU. Collaborative-care a. may increase recovery (5 trials, 804 participants; RR 2.26, 95%CI 1.50 to 3.43); b. may reduce prevalence although the actual effect range indicates it may have little-or-no effect (2 trials, 2820 participants; RR 0.57, 95%CI 0.32 to 1.01); c. may slightly reduce symptoms (6 trials, 4419 participants; SMD -0.35, 95%CI -0.63 to -0.08); d. may slightly improve QOL (6 trials, 2199 participants; SMD 0.34, 95%CI 0.16 to 0.53); e. probably has little-to-no effect on functional impairment (5 trials, 4216 participants; SMD -0.13, 95%CI -0.28 to 0.03); f. may reduce SU (referral to MH specialists);  g. may have uncertain effects on AEs (death). Women with perinatal depression (PND) LHW-led interventions a. may increase recovery (4 trials, 1243 participants; RR 1.29, 95%CI 1.08 to 1.54); b. probably slightly reduce symptoms (5 trials, 1989 participants; SMD -0.26, 95%CI -0.37 to -0.14); c. may slightly reduce functional impairment (4 trials, 1856 participants; SMD -0.23, 95%CI -0.41 to -0.04); d. may have little-to-no effect on AEs (death);  e. may have uncertain effects on SU. Collaborative-care a. has uncertain effects on symptoms/QOL/SU/AEs. Adults with post-traumatic stress (PTS) or CMDs in humanitarian settings LHW-led interventions a. may slightly reduce depression symptoms (5 trials, 1986 participants; SMD -0.36, 95%CI -0.56 to -0.15); b. probably slightly improve QOL (4 trials, 1918 participants; SMD -0.27, 95%CI -0.39 to -0.15); c. may have uncertain effects on symptoms (PTS)/functioning/SU/AEs. PHP-led interventions a. may reduce PTS symptom prevalence (1 trial, 313 participants; RR 5.50, 95%CI 2.50 to 12.10) and depression prevalence (1 trial, 313 participants; RR 4.60, 95%CI 2.10 to 10.08);  b. may have uncertain effects on symptoms/functioning/SU/AEs.   Adults with harmful/hazardous alcohol or substance use LHW-led interventions a. may increase recovery from harmful/hazardous alcohol use although the actual effect range indicates it may have little-or-no effect (4 trials, 872 participants; RR 1.28, 95%CI 0.94 to 1.74); b. may have little-to-no effect on the prevalence of methamphetamine use (1 trial, 882 participants; RR 1.01, 95%CI 0.91 to 1.13) and  functional impairment (2 trials, 498 participants; SMD -0.14, 95%CI -0.32 to 0.03); c. probably slightly reduce risk of harmful/hazardous alcohol use (3 trials, 667 participants; SMD -0.22, 95%CI -0.32 to -0.11);  d. may have uncertain effects on SU/AEs. PHP/CP-led interventions a. probably have little-to-no effect on recovery from harmful/hazardous alcohol use (3 trials, 1075 participants; RR 0.93, 95%CI 0.77 to 1.12) or QOL (1 trial, 560 participants; MD 0.00, 95%CI -0.10 to 0.10); b. probably slightly reduce risk of harmful/hazardous alcohol and substance use (2 trials, 705 participants; SMD -0.20, 95%CI -0.35 to -0.05; moderate-certainty evidence); c. may have uncertain effects on prevalence (cannabis use)/SU/AEs. PW-led interventions for alcohol/substance dependence a. may have uncertain effects.  Adults with severe mental disorders *Comparisons were specialist-led care at T1. LHW-led interventions a. may have little-to-no effect on caregiver burden (1 trial, 253 participants; MD -0.04, 95%CI -0.18 to 0.11);  b. may have uncertain effects on symptoms/functioning/SU/AEs.  PHP-led or collaborative-care a. may reduce functional impairment (7 trials, 874 participants; SMD -1.13, 95%CI -1.78 to -0.47); b. may have uncertain effects on recovery/relapse/symptoms/QOL/SU.  Adults with dementia and carers PHP/LHW-led carer interventions a. may have little-to-no effect on the severity of behavioural symptoms in dementia patients (2 trials, 134 participants; SMD -0.26, 95%CI -0.60 to 0.08); b. may reduce carers' mental distress (2 trials, 134 participants; SMD -0.47, 95%CI -0.82 to -0.13);  c. may have uncertain effects on QOL/functioning/SU/AEs. Children with PTS or CMDs LHW-led interventions a. may have little-to-no effect on PTS symptoms (3 trials, 1090 participants; MCD -1.34, 95%CI -2.83 to 0.14); b. probably have little-to-no effect on depression symptoms (3 trials, 1092 participants; MCD -0.61, 95%CI -1.23 to 0.02) or on functional impairment (3 trials, 1092 participants; MCD -0.81, 95%CI -1.48 to -0.13);  c. may have little-or-no effect on AEs. CP-led interventions a. may have little-to-no effect on depression symptoms (2 trials, 602 participants; SMD -0.19, 95%CI -0.57 to 0.19) or on AEs;  b. may have uncertain effects on recovery/symptoms(PTS)/functioning. AUTHORS' CONCLUSIONS: PW-led interventions show promising benefits in improving outcomes for CMDs, PND, PTS, harmful alcohol/substance use, and dementia carers in LMICs.


Assuntos
Países em Desenvolvimento , Transtornos Mentais , Adulto , Cuidadores , Criança , Feminino , Humanos , Transtornos Mentais/terapia , Saúde Mental , Gravidez , Qualidade de Vida
12.
Cochrane Database Syst Rev ; 3: CD013881, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33734435

RESUMO

BACKGROUND: Interleukin 6 (IL-6) blocking agents have been used for treating severe coronavirus disease 2019 (COVID-19). Their immunosuppressive effect might be valuable in patients with COVID-19 characterised by substantial immune system dysfunction by controlling inflammation and promoting disease tolerance. OBJECTIVES: To assess the effect of IL-6 blocking agents compared to standard care alone or with placebo on efficacy and safety outcomes in COVID-19. We will update this assessment regularly. SEARCH METHODS: We searched the World Health Organization (WHO) International Clinical Trials Registry Platform (up to 11 February 2021) and the L-OVE platform, and Cochrane COVID-19 Study Register to identify trials up to 26 February 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating IL-6 blocking agents compared with standard care alone or with placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. The protocol was amended to reduce the number of outcomes considered. Two review authors independently collected data and assessed the risk of bias with the Cochrane Risk of Bias 2 tool. We rated the certainty of evidence with the GRADE approach for the critical outcomes such as clinical improvement (defined as hospital discharge or improvement on the scale used by trialists to evaluate clinical progression or recovery) (day (D) 28 / ≥ D60); WHO Clinical Progression Score of level 7 or above (i.e. the proportion of participants with mechanical ventilation +/- additional organ support OR death) (D28 / ≥ D60); all-cause mortality (D28 / ≥ D60); incidence of any adverse events; and incidence of serious adverse events. MAIN RESULTS: We identified 10 RCTs with available data including one platform trial comparing tocilizumab and sarilumab with standard of care. These trials evaluated tocilizumab (nine RCTs including two platform trials; seven were reported as peer-reviewed articles, two as preprints; 6428 randomised participants); and two sarilumab (one platform trial reported as peer reviewed article, one reported as preprint, 880 randomised participants). All trials included were multicentre trials. They were conducted in Brazil, China, France, Italy, UK, USA, and four were multi-country trials. The mean age range of participants ranged from 56 to 65 years; 4572 (66.3%) of trial participants were male. Disease severity ranged from mild to critical disease. The reported proportion of participants on oxygen at baseline but not intubated varied from 56% to 100% where reported. Five trials reported the inclusion of intubated patients at baseline. We identified a further 20 registered RCTs of tocilizumab compared to placebo/standard care (five completed without available results, five terminated without available results, eight ongoing, two not recruiting); 11 RCTs of sarilumab (two completed without results, three terminated without available results, six ongoing); six RCTs of clazakisumab (five ongoing, one not recruiting); two RCTs of olokizumab (one completed, one not recruiting); one of siltuximab (ongoing) and one RCT of levilimab (completed without available results). Of note, three were cancelled (2 tocilizumab, 1 clazakisumab). One multiple-arm RCT evaluated both tocilizumab and sarilumab compared to standard of care, one three-arm RCT evaluated tocilizumab and siltuximab compared to standard of care and consequently they appear in each respective comparison. Tocilizumab versus standard care alone or with placebo a. Effectiveness of tocilizumab for patients with COVID-19 Tocilizumab probably results in little or no increase in the outcome of clinical improvement at D28 (RR 1.06, 95% CI 1.00 to 1.13; I2 = 40.9%; 7 RCTs, 5585 participants; absolute effect: 31 more with clinical improvement per 1000 (from 0 fewer to 67 more); moderate-certainty evidence). However, we cannot exclude that some subgroups of patients could benefit from the treatment. We did not obtain data for longer-term follow-up (≥ D60). The effect of tocilizumab on the proportion of participants with a WHO Clinical Progression Score of level of 7 or above is uncertain at D28 (RR 0.99, 95% CI 0.56 to 1.74; I2 = 64.4%; 3 RCTs, 712 participants; low-certainty evidence). We did not obtain data for longer-term follow-up (≥ D60). Tocilizumab reduces all-cause mortality at D28 compared to standard care alone or placebo (RR 0.89, 95% CI 0.82 to 0.97; I2 = 0.0%; 8 RCTs, 6363 participants; absolute effect: 32 fewer deaths per 1000 (from 52 fewer to 9 fewer); high-certainty evidence). The evidence suggests uncertainty around the effect on mortality at ≥ D60 (RR 0.86, 95% CI 0.53 to 1.40; I2 = 0.0%; 2 RCTs, 519 participants; low-certainty evidence). b. Safety of tocilizumab for patients with COVID-19 The evidence is very uncertain about the effect of tocilizumab on adverse events (RR 1.23, 95% CI 0.87 to 1.72; I2 = 86.4%; 7 RCTs, 1534 participants; very low-certainty evidence). Nevertheless, tocilizumab probably results in slightly fewer serious adverse events than standard care alone or placebo (RR 0.89, 95% CI 0.75 to 1.06; I2 = 0.0%; 8 RCTs, 2312 participants; moderate-certainty evidence). Sarilumab versus standard care alone or with placebo The evidence is uncertain about the effect of sarilumab on all-cause mortality at D28 (RR 0.77, 95% CI 0.43 to 1.36; 2 RCTs, 880 participants; low certainty), on all-cause mortality at ≥ D60 (RR 1.00, 95% CI 0.50 to 2.0; 1 RCT, 420 participants; low certainty), and serious adverse events (RR 1.17, 95% CI 0.77 to 1.77; 2 RCTs, 880 participants; low certainty). It is unlikely that sarilumab results in an important increase of adverse events (RR 1.05, 95% CI 0.88 to 1.25; 1 RCT, 420 participants; moderate certainty). However, an increase cannot be excluded No data were available for other critical outcomes. AUTHORS' CONCLUSIONS: On average, tocilizumab reduces all-cause mortality at D28 compared to standard care alone or placebo and probably results in slightly fewer serious adverse events than standard care alone or placebo. Nevertheless, tocilizumab probably results in little or no increase in the outcome clinical improvement (defined as hospital discharge or improvement measured by trialist-defined scales) at D28. The impact of tocilizumab on other outcomes is uncertain or very uncertain. With the data available, we were not able to explore heterogeneity. Individual patient data meta-analyses are needed to be able to identify which patients are more likely to benefit from this treatment. Evidence for an effect of sarilumab is uncertain and evidence for other anti-IL6 agents is unavailable. Thirty-nine RCTs of IL-6 blocking agents with no results are currently registered, of which nine are completed and seven trials were terminated with no results available. The findings of this review will be updated as new data are made available on the COVID-NMA platform (covid-nma.com).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Tratamento Farmacológico da COVID-19 , Interleucina-6/antagonistas & inibidores , Idoso , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Viés , COVID-19/mortalidade , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
JAMA ; 326(11): 1045-1056, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34546296

RESUMO

Importance: Mediation analyses of randomized trials and observational studies can generate evidence about the mechanisms by which interventions and exposures may influence health outcomes. Publications of mediation analyses are increasing, but the quality of their reporting is suboptimal. Objective: To develop international, consensus-based guidance for the reporting of mediation analyses of randomized trials and observational studies (A Guideline for Reporting Mediation Analyses; AGReMA). Design, Setting, and Participants: The AGReMA statement was developed using the Enhancing Quality and Transparency of Health Research (EQUATOR) methodological framework for developing reporting guidelines. The guideline development process included (1) an overview of systematic reviews to assess the need for a reporting guideline; (2) review of systematic reviews of relevant evidence on reporting mediation analyses; (3) conducting a Delphi survey with panel members that included methodologists, statisticians, clinical trialists, epidemiologists, psychologists, applied clinical researchers, clinicians, implementation scientists, evidence synthesis experts, representatives from the EQUATOR Network, and journal editors (n = 19; June-November 2019); (4) having a consensus meeting (n = 15; April 28-29, 2020); and (5) conducting a 4-week external review and pilot test that included methodologists and potential users of AGReMA (n = 21; November 2020). Results: A previously reported overview of 54 systematic reviews of mediation studies demonstrated the need for a reporting guideline. Thirty-three potential reporting items were identified from 3 systematic reviews of mediation studies. Over 3 rounds, the Delphi panelists ranked the importance of these items, provided 60 qualitative comments for item refinement and prioritization, and suggested new items for consideration. All items were reviewed during a 2-day consensus meeting and participants agreed on a 25-item AGReMA statement for studies in which mediation analyses are the primary focus and a 9-item short-form AGReMA statement for studies in which mediation analyses are a secondary focus. These checklists were externally reviewed and pilot tested by 21 expert methodologists and potential users, which led to minor adjustments and consolidation of the checklists. Conclusions and Relevance: The AGReMA statement provides recommendations for reporting primary and secondary mediation analyses of randomized trials and observational studies. Improved reporting of studies that use mediation analyses could facilitate peer review and help produce publications that are complete, accurate, transparent, and reproducible.


Assuntos
Guias como Assunto , Análise de Mediação , Estudos Observacionais como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Lista de Checagem , Técnica Delphi , Humanos , Revisão por Pares , Revisões Sistemáticas como Assunto
14.
BMC Med Res Methodol ; 20(1): 19, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013883

RESUMO

BACKGROUND: There are a growing number of studies using mediation analysis to understand the mechanisms of health interventions and exposures. Recent work has shown that the reporting of these studies is heterogenous and incomplete. This problem stifles clinical application, reproducibility, and evidence synthesis. This paper describes the processes and methods that will be used to develop a guideline for reporting studies of mediation analyses (AGReMA). METHODS/DESIGN: AGReMA will be developed over five overlapping stages. Stage one will comprise a systematic review to examine relevant evidence on the quality of reporting in published studies that use mediation analysis. In the second stage we will consult a group of methodologists and applied researchers by using a Delphi process to identify items that should be considered for inclusion in AGReMA. The third stage will involve a consensus meeting to consolidate and prioritise key items to be included in AGReMA. The fourth stage will involve the production of AGReMA and an accompanying explanation and elaboration document. In the final stage we will disseminate the AGReMA statement via journals, conferences, and professional meetings across multiple disciplines. DISCUSSION: The development and implementation of AGReMA will improve the standardization, transparency, and completeness in the reporting of studies that use mediation analysis to understand the mechanisms of health interventions and exposures.


Assuntos
Intervenção Médica Precoce/métodos , Guias como Assunto , Análise de Mediação , Consenso , Técnica Delphi , Exposição Ambiental/efeitos adversos , Humanos , Projetos de Pesquisa , Revisões Sistemáticas como Assunto
15.
Cochrane Database Syst Rev ; 10: CD012907, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33539585

RESUMO

BACKGROUND: Health systems need timely and reliable access to essential medicines and health commodities, but problems with access are common in many settings. Mobile technologies offer potential low-cost solutions to the challenge of drug distribution and commodity availability in primary healthcare settings. However, the evidence on the use of mobile devices to address commodity shortages is sparse, and offers no clear way forward. OBJECTIVES: Primary objective To assess the effects of strategies for notifying stock levels and digital tracking of healthcare-related commodities and inventory via mobile devices across the primary healthcare system Secondary objectives To describe what mobile device strategies are currently being used to improve reporting and digital tracking of health commodities To identify factors influencing the implementation of mobile device interventions targeted at reducing stockouts of health commodities SEARCH METHODS: We searched CENTRAL, MEDLINE Ovid, Embase Ovid, Global Index Medicus WHO, POPLINE K4Health, and two trials registries in August 2019. We also searched Epistemonikos for related systematic reviews and potentially eligible primary studies. We conducted a grey literature search using mHealthevidence.org, and issued a call for papers through popular digital health communities of practice. Finally, we conducted citation searches of included studies. We searched for studies published after 2000, in any language. SELECTION CRITERIA: For the primary objective, we included individual and cluster-randomised trials, controlled before-after studies, and interrupted time series studies. For the secondary objectives, we included any study design, which could be quantitative, qualitative, or descriptive, that aimed to describe current strategies for commodity tracking or stock notification via mobile devices; or aimed to explore factors that influenced the implementation of these strategies, including studies of acceptability or feasibility. We included studies of all cadres of healthcare providers, including lay health workers, and others involved in the distribution of health commodities (administrative staff, managerial and supervisory staff, dispensary staff); and all other individuals involved in stock notification, who may be based in a facility or a community setting, and involved with the delivery of primary healthcare services. We included interventions aimed at improving the availability of health commodities using mobile devices in primary healthcare settings. For the primary objective, we included studies that compared health commodity tracking or stock notification via mobile devices with standard practice. For the secondary objectives, we included studies of health commodity tracking and stock notification via mobile device, if we could extract data relevant to our secondary objectives. DATA COLLECTION AND ANALYSIS: For the primary objective, two authors independently screened all records, extracted data from the included studies, and assessed the risk of bias. For the analyses of the primary objectives, we reported means and proportions where appropriate. We used the GRADE approach to assess the certainty of the evidence, and prepared a 'Summary of findings' table. For the secondary objective, two authors independently screened all records, extracted data from the included studies, and applied a thematic synthesis approach to synthesise the data. We assessed methodological limitation using the Ways of Evaluating Important and Relevant Data (WEIRD) tool. We used the GRADE-CERQual approach to assess our confidence in the evidence, and prepared a 'Summary of qualitative findings' table. MAIN RESULTS: Primary objective For the primary objective, we included one controlled before-after study conducted in Malawi. We are uncertain of the effect of cStock plus enhanced management, or cStock plus effective product transport on the availability of commodities, quality and timeliness of stock management, and satisfaction and acceptability, because we assessed the evidence as very low-certainty. The study did not report on resource use or unintended consequences. Secondary objective For the secondary objectives, we included 16 studies, using a range of study designs, which described a total of eleven interventions. All studies were conducted in African (Tanzania, Kenya, Malawi, Ghana, Ethiopia, Cameroon, Zambia, Liberia, Uganda, South Africa, and Rwanda) and Asian (Pakistan and India) countries. Most of the interventions aimed to make data about stock levels and potential stockouts visible to managers, who could then take corrective action to address them. We identified several factors that may influence the implementation of stock notification and tracking via mobile device. These include challenges tied to infrastructural issues, such as poor access to electricity or internet, and broader health systems issues, such as drug shortages at the national level which cannot be mitigated by interventions at the primary healthcare level (low confidence). Several factors were identified as important, including strong partnerships with local authorities, telecommunication companies, technical system providers, and non-governmental organizations (very low confidence); availability of stock-level data at all levels of the health system (low confidence); the role of supportive supervision and responsive management (moderate confidence); familiarity and training of health workers in the use of the digital devices (moderate confidence); availability of technical programming expertise for the initial development and ongoing maintenance of the digital systems (low confidence); incentives, such as phone credit for personal use, to support regular use of the system (low confidence); easy-to-use systems built with user participation (moderate confidence); use of basic or personal mobile phones to support easier adoption (low confidence); consideration for software features, such as two-way communication (low confidence); and data availability in an easy-to-use format, such as an interactive dashboard (moderate confidence). AUTHORS' CONCLUSIONS: We need more, well-designed, controlled studies comparing stock notification and commodity management via mobile devices with paper-based commodity management systems. Further studies are needed to understand the factors that may influence the implementation of such interventions, and how implementation considerations differ by variations in the intervention.


Assuntos
Computadores de Mão , Medicamentos Essenciais/provisão & distribuição , Equipamentos e Provisões Hospitalares/provisão & distribuição , Inventários Hospitalares/métodos , Administração de Materiais no Hospital/métodos , Viés , Telefone Celular , Estudos Controlados Antes e Depois/estatística & dados numéricos , Pessoal de Saúde/estatística & dados numéricos , Análise de Séries Temporais Interrompida , Ensaios Clínicos Controlados não Aleatórios como Assunto/estatística & dados numéricos , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos
16.
Cochrane Database Syst Rev ; 7: CD009169, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32623724

RESUMO

BACKGROUND: This is an update of a Cochrane Review published in 2014. Chronic non-specific low back pain (LBP) has become one of the main causes of disability in the adult population around the world. Although therapeutic ultrasound is not recommended in recent clinical guidelines, it is frequently used by physiotherapists in the treatment of chronic LBP. OBJECTIVES: The objective of this review was to determine the effectiveness of therapeutic ultrasound in the management of chronic non-specific LBP. A secondary objective was to determine the most effective dosage and intensity of therapeutic ultrasound for chronic LBP. SEARCH METHODS: We performed electronic searches in CENTRAL, MEDLINE, Embase, CINAHL, PEDro, Index to Chiropractic Literature, and two trials registers to 7 January 2020. We checked the reference lists of eligible studies and relevant systematic reviews and performed forward citation searching. SELECTION CRITERIA: We included randomised controlled trials (RCTs) on therapeutic ultrasound for chronic non-specific LBP. We compared ultrasound (either alone or in combination with another treatment) with placebo or other interventions for chronic LBP. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed the risk of bias of each trial and extracted the data. We performed a meta-analysis when sufficient clinical and statistical homogeneity existed. We determined the certainty of the evidence for each comparison using the GRADE approach. MAIN RESULTS: We included 10 RCTs involving a total of 1025 participants with chronic LBP. The included studies were carried out in secondary care settings in Turkey, Iran, Saudi Arabia, Croatia, the UK, and the USA, and most applied therapeutic ultrasound in addition to another treatment, for six to 18 treatment sessions. The risk of bias was unclear in most studies. Eight studies (80%) had unclear or high risk of selection bias; no studies blinded care providers to the intervention; and only five studies (50%) blinded participants. There was a risk of selective reporting in eight studies (80%), and no studies adequately assessed compliance with the intervention. There was very low-certainty evidence (downgraded for imprecision, inconsistency, and limitations in design) of little to no difference between therapeutic ultrasound and placebo for short-term pain improvement (mean difference (MD) -7.12, 95% confidence interval (CI) -17.99 to 3.75; n = 121, 3 RCTs; 0-to-100-point visual analogue scale (VAS)). There was also moderate-certainty evidence (downgraded for imprecision) of little to no difference in the number of participants achieving a 30% reduction in pain in the short term (risk ratio 1.08, 95% CI 0.81 to 1.44; n = 225, 1 RCT). There was low-certainty evidence (downgraded for imprecision and limitations in design) that therapeutic ultrasound has a small effect on back-specific function compared with placebo in the short term (standardised mean difference -0.29, 95% CI -0.51 to -0.07 (MD -1.07, 95% CI -1.89 to -0.26; Roland Morris Disability Questionnaire); n = 325; 4 RCTs), but this effect does not appear to be clinically important. There was moderate-certainty evidence (downgraded for imprecision) of little to no difference between therapeutic ultrasound and placebo on well-being (MD -2.71, 95% CI -9.85 to 4.44; n = 267, 2 RCTs; general health subscale of the 36-item Short Form Health Survey (SF-36)). Two studies (n = 486) reported on overall improvement and satisfaction between groups, and both reported little to no difference between groups (low-certainty evidence, downgraded for serious imprecision). One study (n = 225) reported on adverse events and did not identify any adverse events related to the intervention (low-certainty evidence, downgraded for serious imprecision). No study reported on disability for this comparison. We do not know whether therapeutic ultrasound in addition to exercise results in better outcomes than exercise alone because the certainty of the evidence for all outcomes was very low (downgraded for imprecision and serious limitations in design). The estimate effect for pain was in favour of the ultrasound plus exercise group (MD -21.1, 95% CI -27.6 to -14.5; n = 70, 2 RCTs; 0-to-100-point VAS) at short term. Regarding back-specific function (MD - 0.41, 95% CI -3.14 to 2.32; n = 79, 2 RCTs; Oswestry Disability Questionnaire) and well-being (MD -2.50, 95% CI -9.53 to 4.53; n = 79, 2 RCTs; general health subscale of the SF-36), there was little to no difference between groups at short term. No studies reported on the number of participants achieving a 30% reduction in pain, patient satisfaction, disability, or adverse events for this comparison. AUTHORS' CONCLUSIONS: The evidence from this systematic review is uncertain regarding the effect of therapeutic ultrasound on pain in individuals with chronic non-specific LBP. Whilst there is some evidence that therapeutic ultrasound may have a small effect on improving low back function in the short term compared to placebo, the certainty of evidence is very low. The true effect is likely to be substantially different. There are few high-quality randomised trials, and the available trials were very small. The current evidence does not support the use of therapeutic ultrasound in the management of chronic LBP.


Assuntos
Dor Crônica/terapia , Dor Lombar/terapia , Terapia por Ultrassom/métodos , Adulto , Viés , Terapia por Estimulação Elétrica , Terapia por Exercício , Humanos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Terapia por Ultrassom/efeitos adversos
17.
Cochrane Database Syst Rev ; 8: CD013679, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32813276

RESUMO

BACKGROUND: The global burden of poor maternal, neonatal, and child health (MNCH) accounts for more than a quarter of healthy years of life lost worldwide. Targeted client communication (TCC) via mobile devices (MD) (TCCMD) may be a useful strategy to improve MNCH. OBJECTIVES: To assess the effects of TCC via MD on health behaviour, service use, health, and well-being for MNCH. SEARCH METHODS: In July/August 2017, we searched five databases including The Cochrane Central Register of Controlled Trials, MEDLINE and Embase. We also searched two trial registries. A search update was carried out in July 2019 and potentially relevant studies are awaiting classification. SELECTION CRITERIA: We included randomised controlled trials that assessed TCC via MD to improve MNCH behaviour, service use, health, and well-being. Eligible comparators were usual care/no intervention, non-digital TCC, and digital non-targeted client communication. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures recommended by Cochrane, although data extraction and risk of bias assessments were carried out by one person only and cross-checked by a second. MAIN RESULTS: We included 27 trials (17,463 participants). Trial populations were: pregnant and postpartum women (11 trials conducted in low-, middle- or high-income countries (LMHIC); pregnant and postpartum women living with HIV (three trials carried out in one lower middle-income country); and parents of children under the age of five years (13 trials conducted in LMHIC). Most interventions (18) were delivered via text messages alone, one was delivered through voice calls only, and the rest were delivered through combinations of different communication channels, such as multimedia messages and voice calls. Pregnant and postpartum women TCCMD versus standard care For behaviours, TCCMD may increase exclusive breastfeeding in settings where rates of exclusive breastfeeding are less common (risk ratio (RR) 1.30, 95% confidence intervals (CI) 1.06 to 1.59; low-certainty evidence), but have little or no effect in settings where almost all women breastfeed (low-certainty evidence). For use of health services, TCCMD may increase antenatal appointment attendance (odds ratio (OR) 1.54, 95% CI 0.80 to 2.96; low-certainty evidence); however, the CI encompasses both benefit and harm. The intervention may increase skilled attendants at birth in settings where a lack of skilled attendants at birth is common (though this differed by urban/rural residence), but may make no difference in settings where almost all women already have a skilled attendant at birth (OR 1.00, 95% CI 0.34 to 2.94; low-certainty evidence). There were uncertain effects on maternal and neonatal mortality and morbidity because the certainty of the evidence was assessed as very low. TCCMD versus non-digital TCC (e.g. pamphlets) TCCMD may have little or no effect on exclusive breastfeeding (RR 0.92, 95% CI 0.79 to 1.07; low-certainty evidence). TCCMD may reduce 'any maternal health problem' (RR 0.19, 95% CI 0.04 to 0.79) and 'any newborn health problem' (RR 0.52, 95% CI 0.25 to 1.06) reported up to 10 days postpartum (low-certainty evidence), though the CI for the latter includes benefit and harm. The effect on health service use is unknown due to a lack of studies. TCCMD versus digital non-targeted communication No studies reported behavioural, health, or well-being outcomes for this comparison. For use of health services, there are uncertain effects for the presence of a skilled attendant at birth due to very low-certainty evidence, and the intervention may make little or no difference to attendance for antenatal influenza vaccination (RR 1.05, 95% CI 0.71 to 1.58), though the CI encompasses both benefit and harm (low-certainty evidence). Pregnant and postpartum women living with HIV TCCMD versus standard care For behaviours, TCCMD may make little or no difference to maternal and infant adherence to antiretroviral (ARV) therapy (low-certainty evidence). For health service use, TCC mobile telephone reminders may increase use of antenatal care slightly (mean difference (MD) 1.5, 95% CI -0.36 to 3.36; low-certainty evidence). The effect on the proportion of births occurring in a health facility is uncertain due to very low-certainty evidence. For health and well-being outcomes, there was an uncertain intervention effect on neonatal death or stillbirth, and infant HIV due to very low-certainty evidence. No studies reported on maternal mortality or morbidity. TCCMD versus non-digital TCC The effect is unknown due to lack of studies reporting this comparison. TCCMD versus digital non-targeted communication TCCMD may increase infant ARV/prevention of mother-to-child transmission treatment adherence (RR 1.26, 95% CI 1.07 to 1.48; low-certainty evidence). The effect on other outcomes is unknown due to lack of studies. Parents of children aged less than five years No studies reported on correct treatment, nutritional, or health outcomes. TCCMD versus standard care Based on 10 trials, TCCMD may modestly increase health service use (vaccinations and HIV care) (RR 1.21, 95% CI 1.08 to 1.34; low-certainty evidence); however, the effect estimates varied widely between studies. TCCMD versus non-digital TCC TCCMD may increase attendance for vaccinations (RR 1.13, 95% CI 1.00 to 1.28; low-certainty evidence), and may make little or no difference to oral hygiene practices (low-certainty evidence). TCCMD versus digital non-targeted communication TCCMD may reduce attendance for vaccinations, but the CI encompasses both benefit and harm (RR 0.63, 95% CI 0.33 to 1.20; low-certainty evidence). No trials in any population reported data on unintended consequences. AUTHORS' CONCLUSIONS: The effect of TCCMD for most outcomes is uncertain. There may be improvements for some outcomes using targeted communication but these findings were of low certainty. High-quality, adequately powered trials and cost-effectiveness analyses are required to reliably ascertain the effects and relative benefits of TCCMD. Future studies should measure potential unintended consequences, such as partner violence or breaches of confidentiality.


Assuntos
Telefone Celular , Saúde da Criança/normas , Comunicação , Necessidades e Demandas de Serviços de Saúde , Saúde do Lactente/normas , Saúde Materna/normas , Aleitamento Materno/estatística & dados numéricos , Saúde da Criança/estatística & dados numéricos , Pré-Escolar , Parto Obstétrico/normas , Feminino , Infecções por HIV/tratamento farmacológico , Comportamentos Relacionados com a Saúde , Nível de Saúde , Humanos , Lactente , Saúde do Lactente/estatística & dados numéricos , Recém-Nascido , Saúde Materna/estatística & dados numéricos , Adesão à Medicação/estatística & dados numéricos , Período Pós-Parto , Gravidez , Cuidado Pré-Natal/estatística & dados numéricos , Melhoria de Qualidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Envio de Mensagens de Texto
18.
Cochrane Database Syst Rev ; 8: CD013680, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32779730

RESUMO

BACKGROUND: The burden of poor sexual and reproductive health (SRH) worldwide is substantial, disproportionately affecting those living in low- and middle-income countries. Targeted client communication (TCC) delivered via mobile devices (MD) (TCCMD) may improve the health behaviours and service use important for sexual and reproductive health. OBJECTIVES: To assess the effects of TCC via MD on adolescents' knowledge, and on adolescents' and adults' sexual and reproductive health behaviour, health service use, and health and well-being. SEARCH METHODS: In July/August 2017, we searched five databases including The Cochrane Central Register of Controlled Trials, MEDLINE and Embase. We also searched two trial registries. A search update was carried out in July 2019 and potentially relevant studies are awaiting classification. SELECTION CRITERIA: We included randomised controlled trials of TCC via MD to improve sexual and reproductive health behaviour, health service use, and health and well-being. Eligible comparators were standard care or no intervention, non-digital TCC, and digital non-targeted communication. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures recommended by Cochrane, although data extraction and risk of bias assessments were carried out by one person only and cross-checked by a second. We have presented results separately for adult and adolescent populations, and for each comparison. MAIN RESULTS: We included 40 trials (27 among adult populations and 13 among adolescent populations) with a total of 26,854 participants. All but one of the trials among adolescent populations were conducted in high-income countries. Trials among adult populations were conducted in a range of high- to low-income countries. Among adolescents, nine interventions were delivered solely through text messages; four interventions tested text messages in combination with another communication channel, such as emails, multimedia messaging, or voice calls; and one intervention used voice calls alone. Among adults, 20 interventions were delivered through text messages; two through a combination of text messages and voice calls; and the rest were delivered through other channels such as voice calls, multimedia messaging, interactive voice response, and instant messaging services. Adolescent populations TCCMD versus standard care TCCMD may increase sexual health knowledge (risk ratio (RR) 1.45, 95% confidence interval (CI) 1.23 to 1.71; low-certainty evidence). TCCMD may modestly increase contraception use (RR 1.19, 95% CI 1.05 to 1.35; low-certainty evidence). The effects on condom use, antiretroviral therapy (ART) adherence, and health service use are uncertain due to very low-certainty evidence. The effects on abortion and STI rates are unknown due to lack of studies. TCCMD versus non-digital TCC (e.g. pamphlets) The effects of TCCMD on behaviour (contraception use, condom use, ART adherence), service use, health and wellbeing (abortion and STI rates) are unknown due to lack of studies for this comparison. TCCMD versus digital non-targeted communication The effects on sexual health knowledge, condom and contraceptive use are uncertain due to very low-certainty evidence. Interventions may increase health service use (attendance for STI/HIV testing, RR 1.61, 95% CI 1.08 to 2.40; low-certainty evidence). The intervention may be beneficial for reducing STI rates (RR 0.61, 95% CI 0.28 to 1.33; low-certainty evidence), but the confidence interval encompasses both benefit and harm. The effects on abortion rates and on ART adherence are unknown due to lack of studies. We are uncertain whether TCCMD results in unintended consequences due to lack of evidence. Adult populations TCCMD versus standard care For health behaviours, TCCMD may modestly increase contraception use at 12 months (RR 1.17, 95% CI 0.92 to 1.48) and may reduce repeat abortion (RR 0.68 95% CI 0.28 to 1.66), though the confidence interval encompasses benefit and harm (low-certainty evidence). The effect on condom use is uncertain. No study measured the impact of this intervention on STI rates. TCCMD may modestly increase ART adherence (RR 1.13, 95% CI 0.97 to 1.32, low-certainty evidence, and standardised mean difference 0.44, 95% CI -0.14 to 1.02, low-certainty evidence). TCCMD may modestly increase health service utilisation (RR 1.17, 95% CI 1.04 to 1.31; low-certainty evidence), but there was substantial heterogeneity (I2 = 85%), with mixed results according to type of service utilisation (i.e. attendance for STI testing; HIV treatment; voluntary male medical circumcision (VMMC); VMMC post-operative visit; post-abortion care). For health and well-being outcomes, there may be little or no effect on CD4 count (mean difference 13.99, 95% CI -8.65 to 36.63; low-certainty evidence) and a slight reduction in virological failure (RR 0.86, 95% CI 0.73 to 1.01; low-certainty evidence). TCCMD versus non-digital TCC No studies reported STI rates, condom use, ART adherence, abortion rates, or contraceptive use as outcomes for this comparison. TCCMD may modestly increase in service attendance overall (RR: 1.12, 95% CI 0.92-1.35, low certainty evidence), however the confidence interval encompasses benefit and harm. TCCMD versus digital non-targeted communication No studies reported STI rates, condom use, ART adherence, abortion rates, or contraceptive use as outcomes for this comparison. TCCMD may increase service utilisation overall (RR: 1.71, 95% CI 0.67-4.38, low certainty evidence), however the confidence interval encompasses benefit and harm and there was considerable heterogeneity (I2 = 72%), with mixed results according to type of service utilisation (STI/HIV testing, and VMMC). Few studies reported on unintended consequences. One study reported that a participant withdrew from the intervention as they felt it compromised their undisclosed HIV status. AUTHORS' CONCLUSIONS: TCCMD may improve some outcomes but the evidence is of low certainty. The effect on most outcomes is uncertain/unknown due to very low certainty evidence or lack of evidence. High quality, adequately powered trials and cost effectiveness analyses are required to reliably ascertain the effects and relative benefits of TCC delivered by mobile devices. Given the sensitivity and stigma associated with sexual and reproductive health future studies should measure unintended consequences, such as partner violence or breaches of confidentiality.


Assuntos
Telefone Celular , Comunicação , Saúde Reprodutiva/normas , Saúde Sexual/normas , Aborto Legal/estatística & dados numéricos , Adolescente , Anticoncepção/estatística & dados numéricos , Comportamentos Relacionados com a Saúde , Conhecimentos, Atitudes e Prática em Saúde , Necessidades e Demandas de Serviços de Saúde/estatística & dados numéricos , Humanos , Melhoria de Qualidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Infecções Sexualmente Transmissíveis , Envio de Mensagens de Texto , Incerteza , Adulto Jovem
19.
Cochrane Database Syst Rev ; 8: CD012927, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32813281

RESUMO

BACKGROUND: The widespread use of mobile technologies can potentially expand the use of telemedicine approaches to facilitate communication between healthcare providers, this might increase access to specialist advice and improve patient health outcomes. OBJECTIVES: To assess the effects of mobile technologies versus usual care for supporting communication and consultations between healthcare providers on healthcare providers' performance, acceptability and satisfaction, healthcare use, patient health outcomes, acceptability and satisfaction, costs, and technical difficulties. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase and three other databases from 1 January 2000 to 22 July 2019. We searched clinical trials registries, checked references of relevant systematic reviews and included studies, and contacted topic experts. SELECTION CRITERIA: Randomised trials comparing mobile technologies to support healthcare provider to healthcare provider communication and consultations compared with usual care. DATA COLLECTION AND ANALYSIS: We followed standard methodological procedures expected by Cochrane and EPOC. We used the GRADE approach to assess the certainty of the evidence. MAIN RESULTS: We included 19 trials (5766 participants when reported), most were conducted in high-income countries. The most frequently used mobile technology was a mobile phone, often accompanied by training if it was used to transfer digital images. Trials recruited participants with different conditions, and interventions varied in delivery, components, and frequency of contact. We judged most trials to have high risk of performance bias, and approximately half had a high risk of detection, attrition, and reporting biases. Two studies reported data on technical problems, reporting few difficulties. Mobile technologies used by primary care providers to consult with hospital specialists We assessed the certainty of evidence for this group of trials as moderate to low. Mobile technologies: - probably make little or no difference to primary care providers following guidelines for people with chronic kidney disease (CKD; 1 trial, 47 general practices, 3004 participants); - probably reduce the time between presentation and management of individuals with skin conditions, people with symptoms requiring an ultrasound, or being referred for an appointment with a specialist after attending primary care (4 trials, 656 participants); - may reduce referrals and clinic visits among people with some skin conditions, and increase the likelihood of receiving retinopathy screening among people with diabetes, or an ultrasound in those referred with symptoms (9 trials, 4810 participants when reported); - probably make little or no difference to patient-reported quality of life and health-related quality of life (2 trials, 622 participants) or to clinician-assessed clinical recovery (2 trials, 769 participants) among individuals with skin conditions; - may make little or no difference to healthcare provider (2 trials, 378 participants) or participant acceptability and satisfaction (4 trials, 972 participants) when primary care providers consult with dermatologists; - may make little or no difference for total or expected costs per participant for adults with some skin conditions or CKD (6 trials, 5423 participants). Mobile technologies used by emergency physicians to consult with hospital specialists about people attending the emergency department We assessed the certainty of evidence for this group of trials as moderate. Mobile technologies: - probably slightly reduce the consultation time between emergency physicians and hospital specialists (median difference -12 minutes, 95% CI -19 to -7; 1 trial, 345 participants); - probably reduce participants' length of stay in the emergency department by a few minutes (median difference -30 minutes, 95% CI -37 to -25; 1 trial, 345 participants). We did not identify trials that reported on providers' adherence, participants' health status and well-being, healthcare provider and participant acceptability and satisfaction, or costs. Mobile technologies used by community health workers or home-care workers to consult with clinic staff We assessed the certainty of evidence for this group of trials as moderate to low. Mobile technologies: - probably make little or no difference in the number of outpatient clinic and community nurse consultations for participants with diabetes or older individuals treated with home enteral nutrition (2 trials, 370 participants) or hospitalisation of older individuals treated with home enteral nutrition (1 trial, 188 participants); - may lead to little or no difference in mortality among people living with HIV (RR 0.82, 95% CI 0.55 to 1.22) or diabetes (RR 0.94, 95% CI 0.28 to 3.12) (2 trials, 1152 participants); - may make little or no difference to participants' disease activity or health-related quality of life in participants with rheumatoid arthritis (1 trial, 85 participants); - probably make little or no difference for participant acceptability and satisfaction for participants with diabetes and participants with rheumatoid arthritis (2 trials, 178 participants). We did not identify any trials that reported on providers' adherence, time between presentation and management, healthcare provider acceptability and satisfaction, or costs. AUTHORS' CONCLUSIONS: Our confidence in the effect estimates is limited. Interventions including a mobile technology component to support healthcare provider to healthcare provider communication and management of care may reduce the time between presentation and management of the health condition when primary care providers or emergency physicians use them to consult with specialists, and may increase the likelihood of receiving a clinical examination among participants with diabetes and those who required an ultrasound. They may decrease the number of people attending primary care who are referred to secondary or tertiary care in some conditions, such as some skin conditions and CKD. There was little evidence of effects on participants' health status and well-being, satisfaction, or costs.


Assuntos
Pessoal de Saúde , Telemedicina/estatística & dados numéricos , Tempo para o Tratamento , Adulto , Viés , Telefone Celular/estatística & dados numéricos , Agentes Comunitários de Saúde/estatística & dados numéricos , Segurança Computacional , Dermatologistas , Retinopatia Diabética/diagnóstico , Serviço Hospitalar de Emergência/estatística & dados numéricos , Fidelidade a Diretrizes/estatística & dados numéricos , Custos de Cuidados de Saúde , Pessoal de Saúde/psicologia , Pessoal de Saúde/estatística & dados numéricos , Nível de Saúde , Humanos , Satisfação do Paciente , Satisfação Pessoal , Atenção Primária à Saúde/estatística & dados numéricos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Encaminhamento e Consulta/estatística & dados numéricos , Insuficiência Renal Crônica/terapia , Dermatopatias/terapia , Telemedicina/economia , Fatores de Tempo , Ultrassonografia
20.
Eur Spine J ; 29(8): 1870-1878, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32495276

RESUMO

PURPOSE: To determine the frequency of red flag signs and symptoms in patients presenting with back pain to the Emergency Department (ED) and association with serious pathologies and investigations performed. METHODS: This retrospective observational study evaluated consecutive patients presenting with back pain to a Melbourne ED over a 14-month period. Data regarding red flags, patient characteristics, ED-initiated investigations, and diagnoses were extracted from medical records. Prevalence of each red flag and sensitivity, specificity, and likelihood ratios for diagnosing serious spinal or non-spinal pathology were calculated. RESULTS: Analysis was undertaken on 1000 eligible participants with back pain. 69% had red flags. Participants were categorised into diagnostic groups: musculoskeletal (80.6%), serious spinal (3.3%), and serious non-spinal (14.6%) pathologies. A number of red flags had positive likelihood ratios (LR) > 5, indicating a higher probability of serious pathology (spinal/non-spinal) including fever (LR + 68.8), tuberculosis history (LR + 13.8), known nephrolithiasis/abdominal aortic aneurysm (LR + 10.2), unexplained weight-loss (LR + 9.2), writhing in pain (LR + 6.9), urinary symptoms (LR + 5.4), and flank pain (LR + 5.2). Red flags with positive LR > 5 indicating a higher probability of serious spinal pathology were saddle anaesthesia (LR + 11.0), tuberculosis history (LR + 9.8), intravenous drug-use (LR + 6.9), acute-onset urinary retention (LR + 6.4), and anal tone loss (LR + 6.3). CONCLUSION: The majority of this study cohort had back pain of benign cause. Some red flags were associated with greater risk of serious pathology, others were not. Further evidence regarding red flags and their association with serious pathology is required, to better inform clinical guidelines.


Assuntos
Dor Lombar , Humanos , Dor nas Costas/diagnóstico , Dor nas Costas/epidemiologia , Serviço Hospitalar de Emergência , Coluna Vertebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA