Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NPJ Parkinsons Dis ; 10(1): 148, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117637

RESUMO

Missense mutations of PARK20/SYNJ1 (synaptojanin1/Synj1) were found in complex forms of familial Parkinsonism. However, the Synj1-regulated molecular and cellular changes associated with dopaminergic dysfunction remain unknown. We now report a fast depletion of evoked dopamine and impaired maintenance of the axonal dopamine transporter (DAT) in the Synj1 haploinsufficient (Synj1+/-) neurons. While Synj1 has been traditionally known to facilitate the endocytosis of synaptic vesicles, we provide in vitro and in vivo evidence demonstrating that Synj1 haploinsufficiency results in an increase of total DAT but a reduction of the surface DAT. Synj1+/- neurons exhibit maladaptive DAT trafficking, which could contribute to the altered DA release. We showed that the loss of surface DAT is associated with the impaired 5'-phosphatase activity and the hyperactive PI(4,5)P2-PKCß pathway downstream of Synj1 deficiency. Thus, our findings provided important mechanistic insight for Synj1-regulated DAT trafficking integral to dysfunctional DA signaling, which might be relevant to early Parkinsonism.

2.
Res Sq ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559229

RESUMO

Missense mutations of PARK20/SYNJ1 (synaptojanin1/Synj1) have been linked to complex forms of familial parkinsonism, however, the molecular and cellular changes associated with dopaminergic dysfunction remains unknown. We now report fast depletion of evoked dopamine (DA) and altered maintenance of the axonal dopamine transporter (DAT) in the Synj1+/- neurons. While Synj1 has been traditionally known to facilitate the endocytosis of synaptic vesicles, we demonstrated that axons of cultured Synj1+/- neurons exhibit an increase of total DAT but a reduction of the surface DAT, which could be exacerbated by neuronal activity. We revealed that the loss of surface DAT is specifically associated with the impaired 5'-phosphatase activity of Synj1 and the hyperactive downstream PI(4,5)P2-PKCß pathway. Thus, our findings provided important mechanistic insight for Synj1-regulated DAT trafficking integral to dysfunctional DA signaling in early parkinsonism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA