RESUMO
Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing.
Assuntos
Pesquisa Biomédica , Genômica , Animais , Análise Mutacional de DNA , Bases de Dados Genéticas , Doença/genética , Projeto Genoma Humano , Humanos , Disseminação de Informação , Modelos AnimaisRESUMO
Highly conserved TREX-mediated mRNA export is emerging as a key pathway in neuronal development and differentiation. TREX subunit variants cause neurodevelopmental disorders (NDDs) by interfering with mRNA export from the cell nucleus to the cytoplasm. Previously we implicated four missense variants in the X-linked THOC2 gene in intellectual disability (ID). We now report an additional six affected individuals from five unrelated families with two de novo and three maternally inherited pathogenic or likely pathogenic variants in THOC2 extending the genotypic and phenotypic spectrum. These comprise three rare missense THOC2 variants that affect evolutionarily conserved amino acid residues and reduce protein stability and two with canonical splice-site THOC2 variants that result in C-terminally truncated THOC2 proteins. We present detailed clinical assessment and functional studies on a de novo variant in a female with an epileptic encephalopathy and discuss an additional four families with rare variants in THOC2 with supportive evidence for pathogenicity. Severe neurocognitive features, including movement and seizure disorders, were observed in this cohort. Taken together our data show that even subtle alterations to the canonical molecular pathways such as mRNA export, otherwise essential for cellular life, can be compatible with life, but lead to NDDs in humans.
Assuntos
Epilepsia/metabolismo , Éxons/genética , Transtornos do Crescimento/metabolismo , Deficiência Intelectual/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Criança , Pré-Escolar , Epilepsia/genética , Feminino , Transtornos do Crescimento/genética , Células HEK293 , Células HeLa , Humanos , Deficiência Intelectual/genética , Masculino , Mutação de Sentido Incorreto/genética , Isoformas de Proteínas/genética , Transporte de RNA/genética , Transporte de RNA/fisiologia , Proteínas de Ligação a RNA/genéticaRESUMO
NSDHL is a 3ß-hydroxysterol dehydrogenase that is involved in the removal of two C-4 methyl groups in one of the later steps of cholesterol biosynthesis. Mutations in the gene encoding the enzyme are responsible for the X-linked, male lethal mouse mutations bare patches and striated, as well as most cases of human CHILD syndrome. Rare, hypomorphic NSDHL mutations are also associated with X-linked intellectual disability in males with CK syndrome. Since hemizygous male mice with Nsdhl mutations die by midgestation, we generated a conditional targeted Nsdhl mutation (Nsdhl(tm1.1Hrm)) to investigate the essential role of cholesterol in the early postnatal CNS. Ablation of Nsdhl in radial glia using GFAP-cre resulted in live-born, normal appearing affected male pups. However, the pups develop overt ataxia by postnatal day 8-10 and die shortly thereafter. Histological abnormalities include progressive loss of cortical and hippocampal neurons, as well as deficits in the proliferation and migration of cerebellar granule precursors and subsequent massive apoptosis of the cerebellar cortex. We replicated the granule cell precursor proliferation defect in vitro and demonstrate that it results from defective signaling by SHH. Furthermore, this defect is almost completely rescued by supplementation of the culture media with exogenous cholesterol, while methylsterol accumulation above the enzymatic block appears to be associated with increased cell death. These data support the absolute requirement for cholesterol synthesis in situ once the blood-brain-barrier forms and cholesterol transport to the fetus is abolished. They further emphasize the complex ramifications of cholesterogenic enzyme deficiency on cellular metabolism.
Assuntos
3-Hidroxiesteroide Desidrogenases/genética , Córtex Cerebelar/crescimento & desenvolvimento , Colesterol/fisiologia , Proteínas Hedgehog/fisiologia , Transdução de Sinais , Alelos , Animais , Córtex Cerebelar/fisiopatologia , Colesterol/biossíntese , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Células-Tronco Neurais , Neurônios/fisiologiaRESUMO
Disclaimer: These recommendations are designed primarily as an educational resource for medical geneticists and other healthcare providers to help them provide quality medical services. Adherence to these recommendations is completely voluntary and does not necessarily assure a successful medical outcome. These recommendations should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this statement. Clinicians also are advised to take notice of the date this statement was adopted and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.To promote standardized reporting of actionable information from clinical genomic sequencing, in 2013, the American College of Medical Genetics and Genomics (ACMG) published a minimum list of genes to be reported as incidental or secondary findings. The goal was to identify and manage risks for selected highly penetrant genetic disorders through established interventions aimed at preventing or significantly reducing morbidity and mortality. The ACMG subsequently established the Secondary Findings Maintenance Working Group to develop a process for curating and updating the list over time. We describe here the new process for accepting and evaluating nominations for updates to the secondary findings list. We also report outcomes from six nominations received in the initial 15 months after the process was implemented. Applying the new process while upholding the core principles of the original policy statement resulted in the addition of four genes and removal of one gene; one gene did not meet criteria for inclusion. The updated secondary findings minimum list includes 59 medically actionable genes recommended for return in clinical genomic sequencing. We discuss future areas of focus, encourage continued input from the medical community, and call for research on the impact of returning genomic secondary findings.Genet Med 19 2, 249-255.
Assuntos
Sequenciamento do Exoma , Testes Genéticos/normas , Genética Médica/normas , Genoma Humano/genética , Exoma/genética , Genômica , HumanosAssuntos
Exoma , Genética Médica , Exoma/genética , Testes Genéticos , Genoma Humano/genética , Genômica , Humanos , Políticas , Estados Unidos , Sequenciamento do ExomaAssuntos
Exoma , Genética Médica , Exoma/genética , Testes Genéticos , Genoma Humano/genética , Genômica , Humanos , Achados Incidentais , Políticas , Estados Unidos , Sequenciamento do ExomaRESUMO
PURPOSE: The aim of this study was to survey American College of Medical Genetics and Genomics members about secondary findings from clinical genome-scale sequencing. METHODS: A Web-based survey was mailed to 1,687 members of the American College of Medical Genetics and Genomics. Exploratory factor analysis identified underlying factors assessed by survey items. Linear regression assessed associations between factor scores and respondent characteristics. RESULTS: The response rate was 29%. Four factors explained 51% of the survey variance: best practices, patient preferences, guidance, and informed consent. Most agreed with "best practice" items describing seeking and reporting of secondary findings as consistent with medical standards, having sufficient evidence, and, for adults, the benefits generally outweighing potential harms. There was lack of agreement regarding benefits versus harms for children and impact on health-care resources. The majority agreed that patient preferences should be considered, including ability to opt out, and that informed consent was feasible and critical. Characteristics significantly associated with factor scores included country of residence, sequencing experience, and years in practice. CONCLUSION: The American College of Medical Genetics and Genomics should update a list of genes to be assessed when clinical genome-scale sequencing is performed. Informed consent is necessary, and reporting of secondary findings should be optional. Research on implementation of secondary findings reporting is needed.
Assuntos
Genômica , Achados Incidentais , Coleta de Dados , Feminino , Genômica/métodos , Pessoal de Saúde , Humanos , Internet , MasculinoRESUMO
Basan syndrome is an extremely rare ectodermal dysplasia with autosomal dominant inheritance and variable expressivity. The etiology of Basan syndrome remains unknown. To identify the Basan syndrome gene, we sequenced keratin 14 (KRT14) and SMARCAD1 in a previously unreported kindred with the disease. Sequencing of the coding regions and splice junctions of KRT14 and SMARCAD1 was performed using PCR-amplified genomic DNA isolated from blood or saliva and standard PCR protocols. In vitro functional studies were performed for a variant identified in SMARCAD1. While direct sequencing of KRT14 failed to reveal any likely pathogenic sequence alterations or splice site variants, a heterozygous splicing variant (c.378+3A>T) that segregated with the disease was identified in the skin-specific isoform of SMARCAD1. In vitro studies failed to demonstrate a splicing defect in SMARCAD1. We screened two candidate genes for Basan syndrome in a 3-generation pedigree. The skin-specific isoform of SMARCAD1 remains a good candidate for this disease.
Assuntos
Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Estudos de Associação Genética , Unhas Malformadas/diagnóstico , Unhas Malformadas/genética , Pré-Escolar , DNA Helicases/genética , Feminino , Genótipo , Humanos , Queratina-14/genética , Masculino , Mutação , Linhagem , Fenótipo , Sítios de Splice de RNARESUMO
Mutations in ERCC6 are associated with growth failure, intellectual disability, neurological dysfunction and deterioration, premature aging, and photosensitivity. We describe siblings with biallelic ERCC6 mutations (NM_000124.2:c. [543+4delA];[2008C>T]) and brain hypomyelination, microcephaly, cognitive decline, and skill regression but without photosensitivity or progeria. DNA repair assays on cultured skin fibroblasts confirmed a defect of transcription-coupled nucleotide excision repair and increased ultraviolet light sensitivity. This report expands the disease spectrum associated with ERCC6 mutations.
Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso/genética , Processamento Alternativo , Biomarcadores/metabolismo , Criança , Pré-Escolar , DNA Helicases/metabolismo , Análise Mutacional de DNA , Enzimas Reparadoras do DNA/metabolismo , Fácies , Feminino , Expressão Gênica , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico , Humanos , Íntrons , Imageamento por Ressonância Magnética , Masculino , Mutação , Doenças do Sistema Nervoso/diagnóstico , Linhagem , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose , IrmãosRESUMO
CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development.
Assuntos
3-Hidroxiesteroide Desidrogenases/genética , Anormalidades Múltiplas/genética , Alelos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Temperatura , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Éxons , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Homologia de Sequência de Aminoácidos , Adulto JovemRESUMO
Since the discovery in 1993 that Smith-Lemli-Opitz syndrome (SLOS) is a disorder of cholesterol biosynthesis, human disorders associated with additional enzymes involved in the conversion of lanosterol to cholesterol have been identified. This review will focus primarily on the clinical aspects of these disorders, highlighting newly described syndromes, such as SC4MOL deficiency and CK syndrome. We will also provide clinical descriptions of additional cases for extremely rare disorders, such as desmosterolosis. We will compare and contrast the findings with those found in SLOS and briefly discuss possible mechanisms of disease pathogenesis.
Assuntos
Lanosterol/biossíntese , Erros Inatos do Metabolismo de Esteroides/fisiopatologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Pré-Escolar , Humanos , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/fisiopatologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/fisiopatologia , Erros Inatos do Metabolismo de Esteroides/genéticaRESUMO
Mutations in the gene encoding the cholesterol biosynthetic enzyme NSDHL are associated with the X-linked male-lethal bare patches (Bpa) mouse. Mutant male embryos for several Nsdhl alleles die in midgestation with placental insufficiency. We examined here a possible role of the maternal genotype in such placental pathology. Pre-pregnancy plasma cholesterol levels were similar between wild-type (WT) and Bpa(1H)/+ dams fed a standard, cholesterol-free diet. However, there was a marked decrease in cholesterol levels between embryonic day (E)8.5 and E10.5 for both genotypes. Further, there was a significant lag between E11.5 and E13.5 (P = 0.0011) in the recovery of levels in Bpa(1H)/+ dams to their pre-pregnancy values. To investigate possible effects of the maternal genotype on fetal placentation, we generated transgenic mice that expressed human NSDHL and rescued the male lethality of the Bpa(1H) null allele. We then compared placenta area at E10.5 in WT and Bpa(1H)/+ female embryos where the mutant X chromosome was transmitted from a heterozygous mother or a rescued mutant father. In mutant conceptuses, placental areas were approximately 50% less than WT. Surprisingly, expression of Nsdhl in trophoblast lineages of the placenta and yolk sac endoderm, which occurs only from the maternally inherited allele in a female embryo, had the largest effect on placental area (-0.681 mm(2); P < 0.0001). The maternal genotype had a smaller effect, independent of the fetal genotype (-0.283 mm(2); P = 0.024). These data demonstrate significant effects of the mother and fetal membranes on pregnancy outcome, with possible implications for cholesterol homeostasis during human pregnancy.
Assuntos
3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Membranas Extraembrionárias/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/embriologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Placenta/patologia , 3-Hidroxiesteroide Desidrogenases/deficiência , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Membranas Extraembrionárias/embriologia , Membranas Extraembrionárias/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Heterozigoto , Humanos , Masculino , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Placenta/embriologia , Placenta/metabolismo , GravidezRESUMO
Basal cell nevus syndrome (BCNS), also known as Gorlin syndrome (OMIM #109400) is a well-described rare autosomal dominant condition due to haploinsufficiency of PTCH1. With the availability of comparative genomic hybridization arrays, increasing numbers of individuals with microdeletions involving this locus are being identified. We present 10 previously unreported individuals with 9q22.3 deletions that include PTCH1. While 7 of the 10 patients (7 females, 3 males) did not meet strict clinical criteria for BCNS at the time of molecular diagnosis, almost all of the patients were too young to exhibit many of the diagnostic features. A number of the patients exhibited metopic craniosynostosis, severe obstructive hydrocephalus, and macrosomia, which are not typically observed in BCNS. All individuals older than a few months of age also had developmental delays and/or intellectual disability. Only facial features typical of BCNS, except in those with prominent midforeheads secondary to metopic craniosynostosis, were shared among the 10 patients. The deletions in these individuals ranged from 352 kb to 20.5 Mb in size, the largest spanning 9q21.33 through 9q31.2. There was significant overlap of the deleted segments among most of the patients. The smallest common regions shared among the deletions were identified in order to localize putative candidate genes that are potentially responsible for each of the non-BCNS features. These were a 929 kb region for metopic craniosynostosis, a 1.08 Mb region for obstructive hydrocephalus, and a 1.84 Mb region for macrosomia. Additional studies are needed to further characterize the candidate genes within these regions.
Assuntos
Síndrome do Nevo Basocelular/diagnóstico , Síndrome do Nevo Basocelular/genética , Síndrome do Nevo Basocelular/patologia , Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Receptores de Superfície Celular/genética , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Feminino , Macrossomia Fetal/genética , Estudos de Associação Genética , Haploinsuficiência/genética , Humanos , Hidrocefalia/diagnóstico , Hidrocefalia/genética , Lactente , Recém-Nascido , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Receptores Patched , Receptor Patched-1 , Patologia MolecularRESUMO
BACKGROUND AND PURPOSE: Mutations in KCNQ3 have classically been associated with benign familial neonatal and infantile seizures and more recently identified in patients with neurodevelopmental disorders and abnormal electroencephalogram (EEG) findings. We present 4 affected patients from a family with a pathogenic mutation in KCNQ3 with a unique constellation of clinical findings. METHODS: A family of 3 affected siblings and mother sharing a KCNQ3 pathogenic variant are described, including clinical history, genetic results, and EEG and magnetic resonance imaging (MRI) findings. RESULTS: This family shows a variety of clinical manifestations, including neonatal seizures, developmental delays, autism spectrum disorder, and anxiety. One child developed absence epilepsy, 2 children have infrequent convulsive seizures that have persisted into childhood, and their parent developed adult-onset epilepsy. An underlying c.1091G>A (R364H) variant in KCNQ3 was found in all affected individuals. CONCLUSIONS: The phenotypic variability of KCNQ3 channelopathies continues to expand as more individuals and families are described, and the variant identified in this family adds to the understanding of the manifestations of KCNQ3-related disorders.
Assuntos
Epilepsia Neonatal Benigna , Epilepsia , Canal de Potássio KCNQ3 , Adulto , Transtorno do Espectro Autista/genética , Criança , Epilepsia/genética , Epilepsia Neonatal Benigna/genética , Humanos , Recém-Nascido , Canal de Potássio KCNQ3/genética , Convulsões/genéticaRESUMO
Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. We explored the genes disrupted by these variants from joint analysis of protein-truncating variants (PTVs), missense variants and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 genes associated with ASD at false discovery rate (FDR) ≤ 0.001 (185 at FDR ≤ 0.05). De novo PTVs, damaging missense variants and CNVs represented 57.5%, 21.1% and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD) (n = 91,605) yielded 373 genes associated with ASD/DD at FDR ≤ 0.001 (664 at FDR ≤ 0.05), some of which differed in relative frequency of mutation between ASD and DD cohorts. The DD-associated genes were enriched in transcriptomes of progenitor and immature neuronal cells, whereas genes showing stronger evidence in ASD were more enriched in maturing neurons and overlapped with schizophrenia-associated genes, emphasizing that these neuropsychiatric disorders may share common pathways to risk.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Humanos , MutaçãoRESUMO
Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome.
Assuntos
Colesterol/biossíntese , Anormalidades Congênitas/etiologia , Erros Inatos do Metabolismo Lipídico/complicações , Anormalidades Múltiplas/etiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Animais , Condrodisplasia Punctata/etiologia , Condrodisplasia Punctata/genética , Condrodisplasia Punctata/metabolismo , Humanos , Erros Inatos do Metabolismo Lipídico/etiologia , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Síndrome de Smith-Lemli-Opitz/etiologia , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/metabolismo , Erros Inatos do Metabolismo de Esteroides , SíndromeRESUMO
Costello syndrome is characterized by severe failure-to-thrive, short stature, cardiac abnormalities (heart defects, tachyarrhythmia, and hypertrophic cardiomyopathy (HCM)), distinctive facial features, a predisposition to papillomata and malignant tumors, postnatal cerebellar overgrowth resulting in Chiari 1 malformation, and cognitive disabilities. De novo germline mutations in the proto-oncogene HRAS cause Costello syndrome. Most mutations affect the glycine residues in position 12 or 13, and more than 80% of patients share p.G12S. To test the hypothesis that subtle genotype-phenotype differences exist, we report the first cohort comparison between 12 Costello syndrome individuals with p.G13C and individuals with p.G12S. The individuals with p.G13C had many typical findings including polyhydramnios, failure-to-thrive, HCM, macrocephaly with posterior fossa crowding, and developmental delay. Subjectively, their facial features were less coarse. Statistically significant differences included the absence of multifocal atrial tachycardia (P-value = 0.033), ulnar deviation of the wrist (P < 0.001) and papillomata (P = 0.003), and fewer neurosurgical procedures (P = 0.024). Fewer individuals with p.G13C had short stature (height below -2 SD) without use of growth hormone (P < 0.001). The noteworthy absence of malignant tumors did not reach statistical significance. Novel ectodermal findings were noted in individuals with p.G13C, including loose anagen hair resulting in easily pluckable hair with a matted appearance, different from the tight curls typical for most Costello syndrome individuals. Unusually long eye lashes requiring trimming are a novel finding we termed dolichocilia. These distinctive ectodermal findings suggest a cell type specific effect of this particular mutation. Additional patients are needed to validate these findings.
Assuntos
Síndrome de Costello/genética , Mutação/genética , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Adolescente , Adulto , Encéfalo/anormalidades , Criança , Pré-Escolar , Síndrome de Costello/complicações , Síndrome de Costello/diagnóstico , Face/anormalidades , Feminino , Cardiopatias Congênitas/etiologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Anormalidades Musculoesqueléticas/etiologia , Neoplasias/etiologia , Gravidez , Proto-Oncogene Mas , Adulto JovemRESUMO
We report on two patients with 1.7 and 1.2 Mb terminal 20p deletions, which have apparently not been reported previously. Both individuals exhibit certain similar features including large fontanelles, ear abnormalities, and seizures. However, even though the deletions are of similar size, there were many disparate features between the two. The deletions in each patient encompass at least 28 genes that may provide useful candidates for ear development and cranial ossification.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 20/genética , Adolescente , Adulto , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Humanos , Lactente , Recém-Nascido , Análise de Sequência com Séries de Oligonucleotídeos , GravidezRESUMO
Copy number variations (CNVs) of the CNTN6 gene - a member of the contactin gene superfamily - have been previously proposed to have an association with neurodevelopmental and autism spectrum disorders. However, no functional evidence has been provided to date and phenotypically normal and mildly affected carriers complicate the interpretation of this aberration. In view of conflicting reports on the pathogenicity of CNVs involving CNTN6 and association with different phenotypes, we, independently, evaluated clinical features of nineteen patients with detected CNV of CNTN6 as part of their clinical microarray analysis at Children's Mercy and Nationwide Children's Hospitals for the period of 2008-2015. The clinical presentations of these patients were variable making it difficult to establish genotype-phenotype correlations. CNVs were inherited in six patients. For thirteen patients, inheritance pattern was not established due to unavailability of parental samples for testing. In three cases CNV was inherited from a healthy parent and in three cases from a parent with neurodevelopmental symptoms. Of the nineteen patients, four had a separate genetic abberation in addition to CNV of the CNTN6 that could independently explain their respective phenotypes. Separately, CNTN6 sequencing was performed on an autism spectrum disorder (ASD) research cohort of 94 children from 80 unrelated families. We found no difference in frequency of rare coding variants between the cohort of patients and controls. We conclude that CNVs involving CNTN6 alone seem to be most likely a neutral variant or a possible modifier rather than a disease-causing variant. Patients with CNVs encompassing CNTN6 could benefit from additional genetic testing since a clinical diagnosis due to a CNV of CNTN6 alone is still questionable.