Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 175: 29-38, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878661

RESUMO

The presence and dissemination of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in the environment is of growing concern worldwide. Manure management practices, such as biological removal of nitrogen from swine manure, may help to decrease levels of antibiotic residues, antibiotic resistance genes and zoonotic bacteria present in manure before fertilization, thereby reducing environmental contamination. Therefore, the aim of this study was to monitor the presence and fate of seven antibiotic residues (colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline, ceftiofur and tylosin A), nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) and two zoonotic bacteria (Salmonella Typhimurium and Campylobacter coli) during biological nitrogen removal from swine manure over time. Samples from the raw manure, the solid fraction, the liquid fraction and the storage lagoon were analyzed on two farms at six time points with an interval of two weeks. Only the antibiotics which were used during the three months preceding the first sampling could be detected before and after biological nitrogen removal from swine manure. Of all the antibiotics studied, doxycycline was recovered in all of the samples and sulfadiazine was recovered in most samples on both farms. For both antibiotics, there appears to be a reduction of the amount of residues present in the storage lagoon compared to the liquid fraction, however, this reduction was not statistically significant. A significant reduction of the relative abundances of most of the antibiotic resistance genes studied was observed when comparing the liquid fraction and the storage lagoon. For tet(L), no differences were observed between the fractions sampled and for sul2 and erm(F), a significant increase in relative abundances was observed on the second farm sampled. For the zoonotic bacteria, a reduction of at least 1 log was observed after biological nitrogen removal from swine manure. The results indicate that the concentration of certain antibiotic residues and several antibiotic resistance genes and the amount of zoonotic bacteria present in the manure may be reduced in the end product of the biological nitrogen removal from swine manure.


Assuntos
Antibacterianos/análise , Antiporters , Proteínas de Bactérias , Campylobacter coli/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Esterco/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Campylobacter coli/genética , Esterco/análise , Salmonella typhimurium/genética , Suínos , Eliminação de Resíduos Líquidos
2.
Transgenic Res ; 23(1): 1-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23963741

RESUMO

Genetically modified organisms (GMOs) and derived food and feed products are subject to a risk analysis and regulatory approval before they can enter the market in the European Union (EU). In this risk analysis process, the role of the European Food Safety Authority (EFSA), which was created in 2002 in response to multiple food crises, is to independently assess and provide scientific advice to risk managers on any possible risks that the use of GMOs may pose to human and animal health and the environment. EFSA's scientific advice is elaborated by its GMO Panel with the scientific support of several working groups and EFSA's GMO Unit. This review presents EFSA's scientific activities and highlights its achievements on the risk assessment of GMOs for the first 10 years of its existence. Since 2002, EFSA has issued 69 scientific opinions on genetically modified (GM) plant market registration applications, of which 62 for import and processing for food and feed uses, six for cultivation and one for the use of pollen (as or in food), and 19 scientific opinions on applications for marketing products made with GM microorganisms. Several guidelines for the risk assessment of GM plants, GM microorganisms and GM animals, as well as on specific issues such as post-market environmental monitoring (PMEM) were elaborated. EFSA also provided scientific advice upon request of the European Commission on safeguard clause and emergency measures invoked by EU Member States, annual PMEM reports, the potential risks of new biotechnology-based plant breeding techniques, evaluations of previously assessed GMOs in the light of new scientific publications, and the use of antibiotic resistance marker genes in GM plants. Future challenges relevant to the risk assessment of GMOs are discussed. EFSA's risk assessments of GMO applications ensure that data are analysed and presented in a way that facilitates scientifically sound decisions that protect human and animal health and the environment.


Assuntos
Animais Geneticamente Modificados , Biotecnologia , Alimentos Geneticamente Modificados , Plantas Geneticamente Modificadas , Animais , União Europeia , Humanos , Medição de Risco
3.
Vet Res ; 45: 89, 2014 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-25217275

RESUMO

During a previous longitudinal study, performed on four farrow-to-finish farms (A to D), samples were taken from twelve sows, their offspring, and the environment on various occasions over six months to study the MRSA presence. During the present study, a selection of the obtained MRSA isolates were typed by multiple-locus variable-number tandem-repeat analysis (MLVA), Pulsed Field Gel Electrophoresis (PFGE), spa typing, and SCCmec typing to study the genetic diversity of LA-MRSA isolates and to determine possible MRSA sources for pig(let)s. PFGE, spa typing, and SCCmec typing revealed the presence of one or few dominant genotype(s) per farm. In contrast, 212 MLVA types were detected on the four farms, forming one cluster on farm A, three on farm B, four on farm C and two on farm D. The genotype, found on farm A was unique for this farm. Farms B, C and D shared one cluster. In general, MLVA types from these clusters were isolated from piglets, sows, and the environment on various sampling events. Piglets carried MLVA types both related and unrelated to their mother sows' MLVA types at farrowing and onwards. In conclusion, molecular typing revealed that within a farm one or a few dominant strain(s) are widespread. Potential MRSA sources for piglets were mother sows, the environment and other piglets.


Assuntos
Proteínas de Bactérias/genética , Variação Genética , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/veterinária , Doenças dos Suínos/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Eletroforese em Gel de Campo Pulsado/veterinária , Staphylococcus aureus Resistente à Meticilina/metabolismo , Repetições Minissatélites , Tipagem de Sequências Multilocus/veterinária , Reação em Cadeia da Polimerase/veterinária , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Suínos , Doenças dos Suínos/epidemiologia
4.
EFSA J ; 22(4): e8745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681740

RESUMO

Two alternative methods for producing compost in a tunnel, from certain category (Cat.) 3 animal by-products (ABP) and other non-ABP material, were assessed. The first method proposed a minimum temperature of 55°C for 72 h and the second 60°C for 48 h, both with a maximum particle size of 200 mm. The assessment of the Panel on Biological Hazards (BIOHAZ) exclusively focused on Cat. 3 ABP materials (catering waste and processed foodstuffs of animal origin no longer intended for human consumption). The proposed composting processes were evaluated for their efficacy to achieve a reduction of at least 5 log10 of Enterococcus faecalis and Salmonella Senftenberg (775W, H2S negative) and at least 3 log10 of relevant thermoresistant viruses. The applicant provided a list of biological hazards that may enter the composting process and selected parvoviruses as the indicator of the thermoresistant viruses. The evidence provided by the applicant included: (a) literature data on thermal inactivation of biological hazards; (b) results from validation studies on the reduction of E. faecalis, Salmonella Senftenberg 775W H2S negative and canine parvovirus carried out in composting plants across Europe; (c) and experimental data from direct measurements of reduction of infectivity of murine parvovirus in compost material applying the time/temperature conditions of the two alternative methods. The evidence provided showed the capacity of the proposed alternative methods to reduce E. faecalis and Salmonella Senftenberg 775W H2S negative by at least 5 log10, and parvoviruses by at least 3 log10. The BIOHAZ Panel concluded that the two alternative methods under assessment can be considered to be equivalent to the processing method currently approved in the Commission Regulation (EU) No 142/2011.

5.
EFSA J ; 22(4): e8707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601872

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of the feed additive consisting of l-tryptophan produced by fermentation with Escherichia coli CGMCC 7.460 when used as a nutritional additive in feed and water for drinking for all animal species and categories. The production strain is not genetically modified. Viable cells of the production strain were not detected in the final additive. The additive does not give rise to any safety concern regarding the production strain. The use of l-tryptophan (≥ 98%) produced with E. coli CGMCC 7.460 to supplement feed is safe for non-ruminant species. There may be a risk for an increased production of toxic metabolites when unprotected tryptophan is used in ruminants. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) has concerns on the safety of the simultaneous oral administration of l-tryptophan via water for drinking and feed due to possible amino acid imbalances and hygienic reasons. The use of l-tryptophan produced with E. coli CGMCC 7.460 in animal nutrition raises no safety concerns to consumers of animal products and to the environment. In the absence of data, the FEEDAP Panel cannot conclude on the potential of the additive to be irritant to skin or eyes, or on its potential to be a dermal sensitiser. The endotoxin activity of the additive in combination with the high dusting potential may represent a risk of exposure by inhalation to endotoxins for users. The additive l-tryptophan is regarded as an effective source of the amino acid l-tryptophan for all non-ruminant species. To be as efficacious in ruminants as in non-ruminants, it should be protected from ruminal degradation.

6.
EFSA J ; 22(1): e8517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213415

RESUMO

The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. The QPS approach is based on an assessment of published data for each taxonomic unit (TU), with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a TU are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 71 microorganisms notified to EFSA between April and September 2023 (30 as feed additives, 22 as food enzymes or additives, 7 as novel foods and 12 from plant protection products [PPP]), 61 were not evaluated because: 26 were filamentous fungi, 1 was Enterococcus faecium, 5 were Escherichia coli, 1 was a bacteriophage (all excluded from the QPS evaluation) and 28 were TUs that already have a QPS status. The other 10 notifications belonged to 9 TUs which were evaluated for a possible QPS status: Ensifer adhaerens and Heyndrickxia faecalis did not get the QPS recommendation due to the limited body of knowledge about their occurrence in the food and/or feed chains and Burkholderia ubonensis also due to its ability to generate biologically active compounds with antimicrobial activity; Klebsiella pneumoniae, Serratia marcescens and Pseudomonas putida due to safety concerns. K. pneumoniae is excluded from future QPS evaluations. Chlamydomonas reinhardtii is recommended for QPS status with the qualification 'for production purposes only'; Clostridium tyrobutyricum is recommended for QPS status with the qualification 'absence of genetic determinants for toxigenic activity'; Candida oleophila has been added as a synonym of Yarrowia lipolytica. The Panel clarifies the extension of the QPS status for genetically modified strains.

7.
EFSA J ; 22(1): e8514, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222927

RESUMO

The food enzyme 3-phytase (myo-inositol-hexakisphosphate 3-phosphohydrolase EC 3.1.3.8) is produced with the genetically modified Aspergillus niger strain NPH by DSM Food Specialties. The genetic modifications do not give rise to safety concerns. The food enzyme was considered free from viable cells of the production organism and its DNA. It is intended to be used in three food manufacturing processes: processing of cereals and other grains for the production of (1) baked products and (2) distilled alcohol, and the processing of plant- and fungal-derived products for the production of (3) plant-based analogues of milk and milk products. Since no residual amounts of total organic solids (TOS) are carried over into distilled alcohol, dietary exposure was calculated only for the remaining two food manufacturing processes. It was estimated to be up to 0.553 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 833 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 1506. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded (except for distilled alcohol production), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

8.
EFSA J ; 22(2): e8624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405112

RESUMO

The food enzyme microbial collagenase (EC 3.4.24.3) is produced with the genetically modified Streptomyces violaceoruber strain pCol by Nagase (Europa) GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in two food manufacturing processes: the production of modified meat and fish products and the production of protein hydrolysates from meat and fish proteins. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.098 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 940 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 856. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

9.
EFSA J ; 22(2): e8612, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38410147

RESUMO

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain DP-Cyb74 by Genencor International B.V. The production strain met all requirements for the qualified presumption of safety (QPS) approach to safety assessment. The food enzyme is intended to be used in six food manufacturing processes. Dietary exposure to the food enzyme total organic solids (TOS) was estimated to be up to 1.536 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the QPS approach and no issue of concern arose from the production process of the food enzyme, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

10.
EFSA J ; 22(2): e8634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38410144

RESUMO

The food enzyme thermolysin (EC. 3.4.24.27) is produced with the non-genetically modified Anoxybacillus caldiproteolyticus strain AE-TP by Amano Enzyme Inc. The food enzyme is free from viable cells of the production organism. It is intended to be used in eight food manufacturing processes. Dietary exposure was estimated to be up to 0.973 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 700 mg TOS/kg bw per day, the mid-dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 719. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

11.
EFSA J ; 22(2): e8616, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38415018

RESUMO

The food enzyme ß-fructofuranosidase (ß-d-fructofuranoside fructohydrolase; EC 3.2.1.26) is produced with the non-genetically modified Saccharomyces cerevisiae strain NCYC R693 by Kerry Ingredients & Flavours Ltd. The production strain meets the requirements for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in four food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 2.485 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the QPS approach of safety assessment and no issue of concern arising from the production process of the food enzyme were identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and one match with a tomato allergen was found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to tomato, cannot be excluded. However, the likelihood of allergic reactions is expected not to exceed the likelihood of allergic reactions to tomato. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

12.
EFSA J ; 22(7): e8872, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38966133

RESUMO

The food enzyme ß-glucosidase (ß-D-glucoside glucohydrolase; EC 3.2.1.21) is produced with the non-genetically modified Penicillium guanacastense strain AE-GLY by Amano Enzyme Inc. The food enzyme is intended to be used in four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 4.054 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 943 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 233. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

13.
EFSA J ; 22(5): e8770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756348

RESUMO

Bacillus paralicheniformis, a species known to produce the antimicrobial bacitracin, could be misidentified as Bacillus licheniformis, depending on the identification method used. For this reason, the European Commission requested EFSA to review the taxonomic identification of formerly assessed B. licheniformis production strains. Following this request, EFSA retrieved the raw data from 27 technical dossiers submitted and found that the taxonomic identification was established by 16S rRNA gene analyses for 15 strains and by whole genome sequence analysis for 12 strains. As a conclusion, only these 12 strains could be unambiguously identified as B. licheniformis.

14.
EFSA J ; 22(4): e8719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650612

RESUMO

Surveillance data published since 2010, although limited, showed that there is no evidence of zoonotic parasite infection in market quality Atlantic salmon, marine rainbow trout, gilthead seabream, turbot, meagre, Atlantic halibut, common carp and European catfish. No studies were found for greater amberjack, brown trout, African catfish, European eel and pikeperch. Anisakis pegreffii, A. simplex (s. s.) and Cryptocotyle lingua were found in European seabass, Atlantic bluefin tuna and/or cod, and Pseudamphistomum truncatum and Paracoenogonimus ovatus in tench, produced in open offshore cages or flow-through ponds or tanks. It is almost certain that fish produced in closed recirculating aquaculture systems (RAS) or flow-through facilities with filtered water intake and exclusively fed heat-treated feed are free of zoonotic parasites. Since the last EFSA opinion, the UV-press and artificial digestion methods have been developed into ISO standards to detect parasites in fish, while new UV-scanning, optical, molecular and OMICs technologies and methodologies have been developed for the detection, visualisation, isolation and/or identification of zoonotic parasites in fish. Freezing and heating continue to be the most efficient methods to kill parasites in fishery products. High-pressure processing may be suitable for some specific products. Pulsed electric field is a promising technology although further development is needed. Ultrasound treatments were not effective. Traditional dry salting of anchovies successfully inactivated Anisakis. Studies on other traditional processes - air-drying and double salting (brine salting plus dry salting) - suggest that anisakids are successfully inactivated, but more data covering these and other parasites in more fish species and products is required to determine if these processes are always effective. Marinade combinations with anchovies have not effectively inactivated anisakids. Natural products, essential oils and plant extracts, may kill parasites but safety and organoleptic data are lacking. Advanced processing techniques for intelligent gutting and trimming are being developed to remove parasites from fish.

15.
EFSA J ; 22(7): e8877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974925

RESUMO

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is produced with the non-genetically modified Penicillium caseifulvum strain AE-LRF by Amano Enzyme Inc. The food enzyme was free from viable cells of the production organism. It is intended to be used in four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.013 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 69 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 5308. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. However, the Panel noted that traces of ■■■■■, used in the manufacture of the triacylglycerol lipase, may be found in the food enzyme. The Panel considered that the risk of allergic reactions upon dietary exposure could not be excluded, particularly in individuals sensitised to fish. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

16.
EFSA J ; 22(6): e8822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946918

RESUMO

The EFSA Panel on Food Additive and Flavourings (FAF Panel) provides a scientific opinion on the safety of soy leghemoglobin from genetically modified Komagataella phaffii as a food additive in accordance with Regulation (EC) No 1331/2008. The proposed food additive, LegH Prep, is intended to be used as a colour in meat analogue products. The yeast Komagataella phaffii strain MXY0541 has been genetically modified to produce soy leghemoglobin; the safety of the genetic modification is under assessment by the EFSA GMO Panel (EFSA-GMO-NL-2019-162). The amount of haem iron provided by soy leghemoglobin from its proposed uses in meat analogue products is comparable to that provided by similar amounts of different types of meat. The exposure to iron from the proposed food additive, both at the mean and 95th percentile exposure, will be below the 'safe levels of intake' established by the NDA Panel for all population groups. Considering that the components of the proposed food additive will be digested to small peptide, amino acids and haem B; the recipient (non GM) strain qualifies for qualified presumption of safety status; no genotoxicity concern has been identified and no adverse effects have been identified at the highest dose tested in the available toxicological studies, the Panel concluded that there was no need to set a numerical acceptable daily intake (ADI) and that the food additive does not raise a safety concern at the proposed use in food category 12.9 and maximum use level. The Panel concluded that the use of soy leghemoglobin from genetically modified Komagataella phaffii MXY0541 as a new food additive does not raise a safety concern at the proposed use and use level. This safety evaluation of the proposed food additive remains provisional subject to the ongoing safety assessment of the genetic modification of the production strain by the GMO Panel (EFSA-GMO-NL-2019-162).

17.
EFSA J ; 22(1): e8512, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38250500

RESUMO

The food enzyme mucorpepsin (EC 3.4.23.23) is produced with the non-genetically modified Rhizomucor miehei strain FRO by DSM Food Specialties B.V. The enzyme can be chemically modified to produce a thermolabile form. The food enzyme is free from viable cells of the production organism. It is intended to be used in three food manufacturing processes: processing of dairy products for the production of (1) cheese, (2) edible rennet casein, (3) fermented dairy products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to about 0.072 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 2000 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, results in a margin of exposure of at least 27,778. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and five matches were found. The Panel considered that a risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded, but is considered low, except for individuals sensitised to mustard proteins, for whom the risk will not exceed that of mustard consumption. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

18.
EFSA J ; 22(1): e8521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38250499

RESUMO

Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.

19.
EFSA J ; 22(1): e8509, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288396

RESUMO

The food enzyme protein-glutamine γ-glutamyltransferase (protein-glutamine: amine γ-glutamyltransferase; EC 2.3.2.13) is produced with the non-genetically modified Streptomyces mobaraensis strain M2020197 by Taixing Dongsheng Bio-Tech Co. Ltd. The identity of the production strain and the absence of viable cells could not be established. The food enzyme is intended to be used in eight food manufacturing processes: processing of cereals and other grains for the production of (1) baked products, (2) cereal-based products other than baked; processing of dairy products for the production of (3) fermented dairy products, (4) cheese, (5) dairy desserts; processing of plant- and fungal-derived products for the production of (6) meat analogues, (7) plant-based analogues of milk and milk products; processing of meat and fish products for the production of (8) modified meat and fish products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 3.498 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 91 mg TOS/kg bw per day. The calculated margin of exposure for each age group was 36 (infants), 26 (toddlers), 50 (children), 99 (adolescents), 115 (adults) and 133 (the elderly). A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood is low. The safety of the food enzyme could not be established given the derived margins of exposure. Therefore, the Panel concluded that the food enzyme could not be considered safe under the intended conditions of use.

20.
EFSA J ; 22(3): e8631, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450083

RESUMO

The food enzyme mucorpepsin (EC 3.4.23.23) is produced with the non-genetically modified Rhizomucor miehei strain LP-N836 by Meito Sangyo Co., Ltd. The native enzyme can be chemically modified to produce a more thermolabile form. The food enzyme is free from viable cells of the production organism. It is intended to be used in the processing of dairy products for the production of cheese and fermented dairy products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.108 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 95 mg TOS/kg bw per day, the mid-dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 880. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and four matches with respiratory allergens and one with a food allergen (mustard) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to mustard proteins, cannot be excluded. Based on the data provided, the Panel concluded that both the native and thermolabile forms of this food enzyme do not give rise to safety concerns under the intended conditions of use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA