Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Exp Physiol ; 104(4): 568-579, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30663834

RESUMO

NEW FINDINGS: What is the central question of this study? We have evaluated changes in cardiovascular physiology using echocardiography in an experimental model of lung fibrosis. What is the main finding and its importance? Remarkably, we report changes in cardiovascular function as early as day 7, concomitant with evidence of vascular remodelling. We also report that isolated pulmonary arteries were hypercontractile in response to a thromboxane A2 agonist. These findings are significant because the development of pulmonary hypertension is one of the most significant predictors of mortality in patients with lung fibrosis, where there are no available therapies and a lack of animal models. ABSTRACT: Group III pulmonary hypertension is observed in patients with chronic lung diseases such as chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis. Pulmonary hypertension (PH) develops as a result of extensive pulmonary vascular remodelling and resultant changes in vascular tone that can lead to right ventricle hypertrophy. This eventually leads to right heart failure, which is the leading indicator of mortality in patients with idiopathic pulmonary fibrosis. Treatments for group III PH are not available, in part owing to a lack of viable animal models. Here, we have evaluated the cardiovascular changes in a model of lung fibrosis and PH. Data obtained from this study indicated that structural alterations in the right heart, such as right ventricular wall hypertrophy, occurred as early as day 14, and similar increases in right ventricle chamber size were seen between days 21 and 28. These structural changes were correlated with decreases in the systolic function of the right ventricle and right ventricular cardiac output, which also occurred between the same time points. Characterization of pulmonary artery dynamics also highlighted that PH might be occurring as early as day 21, indicated by reductions in the velocity-time integral; however, evidence for PH is apparent as early as day 7, indicated by the significant reduction in pulmonary acceleration time values. These changes are consistent with evidence of vascular remodelling observed histologically starting on day 7. In addition, we report hyperactivity of bleomycin-exposed pulmonary arteries to a thromboxane A2 receptor (Tbxa2r) agonist.


Assuntos
Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Função Ventricular Direita/fisiologia , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Ecocardiografia/métodos , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Artéria Pulmonar/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fibrose Pulmonar/induzido quimicamente , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/fisiologia
2.
Exp Physiol ; 103(12): 1692-1703, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260066

RESUMO

NEW FINDINGS: What is the central question of this study? When do alterations in pulmonary mechanics occur following chronic low-dose administration of bleomycin? What is the main finding and its importance? Remarkably, we report changes in lung mechanics as early as day 7 that corresponded to parameters determined from single-frequency forced oscillation manoeuvres and pressure-volume loops. These changes preceded substantial histological changes or changes in gene expression levels. These findings are significant to refine drug discovery in idiopathic pulmonary fibrosis, where preclinical studies using lung function parameters would enhance the translational potential of drug candidates where lung function readouts are routinely performed in the clinic. ABSTRACT: Idiopathic pulmonary fibrosis (IPF) is the most widespread form of interstitial lung disease and, currently, there are only limited treatment options available. In preclinical animal models of lung fibrosis, the effectiveness of experimental therapeutics is often deemed successful via reductions in collagen deposition and expression of profibrotic genes in the lung. However, in clinical studies, improvements in lung function are primarily used to gauge the success of therapeutics directed towards IPF. Therefore, we examined whether changes in respiratory system mechanics in the early stages of an experimental model of lung fibrosis can be used to refine drug discovery approaches for IPF. C57BL/6J mice were administered bleomycin (BLM) or a vehicle control i.p. twice a week for 4 weeks. At 7, 14, 21, 28 and 33 days into the BLM treatment regimen, indices of respiratory system mechanics and pressure-volume relationships were measured. Concomitant with these measurements, histological and gene analyses relevant to lung fibrosis were performed. Alterations in respiratory system mechanics and pressure-volume relationships were observed as early as 7 days after the start of BLM administration. Changes in respiratory system mechanics preceded the appearance of histological and molecular indices of lung fibrosis. Administration of BLM leads to early changes in respiratory system mechanics that coincide with the appearance of representative histological and molecular indices of lung fibrosis. Consequently, these data suggest that dampening the early changes in respiratory system mechanics might be used to assess the effectiveness of experimental therapeutics in preclinical animal models of lung fibrosis.


Assuntos
Bleomicina/administração & dosagem , Pulmão/efeitos dos fármacos , Mecânica Respiratória/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/tratamento farmacológico
3.
ACS Omega ; 7(18): 15404-15410, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571830

RESUMO

The effect of polyvalent cations, like spermine, on the condensation of DNA into very well-defined toroidal shapes has been well studied and understood. A great effort has been made to obtain similar condensed structures from RNA molecules, but so far, it has been elusive. In this work, we show that single-stranded RNA (ssRNA) molecules can easily be condensed into nanoring and globular structures on a mica surface, where each nanoring structure is formed mostly by a single RNA molecule. The condensation occurs in a concentration range of different cations, from monovalent to trivalent, but at a higher concentration, globular structures appear. RNA nanoring structures were observed on mica surfaces by atomic force microscopy (AFM). The samples were observed in tapping mode and were prepared by drop evaporation of a solution of RNA in the presence of one type of the different cations used. As far as we know, this is the first time that nanorings or any other well-defined condensed RNA structures have been reported in the presence of simple salts. The RNA nanoring formation can be understood by an energy competition between the hydrogen bonding forming hairpin stems-weakened by the salts-and the hairpin loops. This result may have an important biological relevance since it has been proposed that RNA is the oldest genome-coding molecule, and the formation of these structures could have given it stability against degradation in primeval times. Even more, the nanoring structures could have the potential to be used as biosensors and functionalized nanodevices.

4.
Can Respir J ; 2017: 1430350, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286407

RESUMO

Pulmonary hypertension (PH) is commonly present in patients with chronic lung diseases such as Chronic Obstructive Pulmonary Disease (COPD) or Idiopathic Pulmonary Fibrosis (IPF) where it is classified as Group III PH by the World Health Organization (WHO). PH has been identified to be present in as much as 40% of patients with COPD or IPF and it is considered as one of the principal predictors of mortality in patients with COPD or IPF. However, despite the prevalence and fatal consequences of PH in the setting of chronic lung diseases, there are limited therapies available for patients with Group III PH, with lung transplantation remaining as the most viable option. This highlights our need to enhance our understanding of the molecular mechanisms that lead to the development of Group III PH. In this review we have chosen to focus on the current understating of PH in IPF, we will revisit the main mediators that have been shown to play a role in the development of the disease. We will also discuss the experimental models available to study PH associated with lung fibrosis and address the role of the right ventricle in IPF. Finally we will summarize the current available treatment options for Group III PH outside of lung transplantation.


Assuntos
Hipertensão Pulmonar/etiologia , Fibrose Pulmonar Idiopática/complicações , Animais , Modelos Animais de Doenças , Epigênese Genética , Ventrículos do Coração/fisiopatologia , Humanos , Hipertensão Pulmonar/epidemiologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/terapia , Prevalência
5.
Br J Pharmacol ; 174(19): 3284-3301, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28688167

RESUMO

BACKGROUND AND PURPOSE: Group III pulmonary hypertension (PH) is a highly lethal and widespread lung disorder that is a common complication in idiopathic pulmonary fibrosis (IPF) where it is considered to be the single most significant predictor of mortality. While increased levels of hyaluronan have been observed in IPF patients, hyaluronan-mediated vascular remodelling and the hyaluronan-mediated mechanisms promoting PH associated with IPF are not fully understood. EXPERIMENTAL APPROACH: Explanted lung tissue from patients with IPF with and without a diagnosis of PH was used to identify increased levels of hyaluronan. In addition, an experimental model of lung fibrosis and PH was used to test the capacity of 4-methylumbeliferone (4MU), a hyaluronan synthase inhibitor to attenuate PH. Human pulmonary artery smooth muscle cells (PASMC) were used to identify the hyaluronan-specific mechanisms that lead to the development of PH associated with lung fibrosis. KEY RESULTS: In patients with IPF and PH, increased levels of hyaluronan and expression of hyaluronan synthase genes are present. Interestingly, we also report increased levels of hyaluronidases in patients with IPF and IPF with PH. Remarkably, our data also show that 4MU is able to inhibit PH in our model either prophylactically or therapeutically, without affecting fibrosis. Studies to determine the hyaluronan-specific mechanisms revealed that hyaluronan fragments result in increased PASMC stiffness and proliferation but reduced cell motility in a RhoA-dependent manner. CONCLUSIONS AND IMPLICATIONS: Taken together, our results show evidence of a unique mechanism contributing to PH in the context of lung fibrosis.


Assuntos
Ácido Hialurônico/antagonistas & inibidores , Himecromona/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Fibrose Pulmonar/tratamento farmacológico , Idoso , Animais , Células Cultivadas , Feminino , Humanos , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Artéria Pulmonar/citologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Serina Endopeptidases/metabolismo , Remodelação Vascular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA