Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38044467

RESUMO

English learners (ELs) are a rapidly growing population in schools in the United States with limited experience and proficiency in English. To better understand the path for EL's academic success in school, it is important to understand how EL's brain systems are used for academic learning in English. We studied, in a cohort of Hispanic middle-schoolers (n = 45, 22F) with limited English proficiency and a wide range of reading and math abilities, brain network properties related to academic abilities. We applied a method for localizing brain regions of interest (ROIs) that are group-constrained, yet individually specific, to test how resting state functional connectivity between regions that are important for academic learning (reading, math, and cognitive control regions) are related to academic abilities. ROIs were selected from task localizers probing reading and math skills in the same participants. We found that connectivity across all ROIs, as well as connectivity of just the cognitive control ROIs, were positively related to measures of reading skills but not math skills. This work suggests that cognitive control brain systems have a central role for reading in ELs. Our results also indicate that an individualized approach for localizing brain function may clarify brain-behavior relationships.


Assuntos
Encéfalo , Instituições Acadêmicas , Humanos , Encéfalo/diagnóstico por imagem , Leitura
2.
Hum Brain Mapp ; 45(2): e26608, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339899

RESUMO

Emerging research has provided valuable insights into the structural characteristics of the bilingual brain from studies of bilingual adults; however, there is a dearth of evidence examining brain structural alterations in childhood associated with the bilingual experience. This study examined the associations between bilingualism and white matter organization in bilingual children compared to monolingual peers leveraging the large-scale data from the Adolescent Brain Cognitive Development (ABCD) Study. Then, 446 bilingual children (ages 9-10) were identified from the participants in the ABCD data and rigorously matched to a group of 446 monolingual peers. Multiple regression models for selected language and cognitive control white matter pathways were used to compare white matter fractional anisotropy (FA) values between bilinguals and monolinguals, controlling for demographic and environmental factors as covariates in the models. Results revealed significantly lower FA values in bilinguals compared to monolinguals across established dorsal and ventral language network pathways bilaterally (i.e., the superior longitudinal fasciculus and inferior frontal-occipital fasciculus) and right-hemispheric pathways in areas related to cognitive control and short-term memory (i.e., cingulum and parahippocampal cingulum). In contrast to the enhanced FA values observed in adult bilinguals relative to monolinguals, our findings of lower FA in bilingual children relative to monolinguals may suggest a protracted development of white matter pathways associated with language and cognitive control resulting from dual language learning in childhood. Further, these findings underscore the need for large-scale longitudinal investigation of white matter development in bilingual children to understand neuroplasticity associated with the bilingual experience during this period of heightened language learning.


Assuntos
Multilinguismo , Substância Branca , Adulto , Criança , Humanos , Adolescente , Substância Branca/diagnóstico por imagem , Idioma , Desenvolvimento da Linguagem , Cognição
3.
Exp Brain Res ; 241(6): 1555-1567, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37127798

RESUMO

Older adults with Type II Diabetes Mellitus (DM) experience mild cognitive impairment, specifically in the domain of recall/working memory. No consistent causative structural cortical deficits have been identified in persons with DM (PwDM). Memory deficits may be exacerbated in older adult females, who are at the highest risk of cardiovascular decline due to DM. The focus of the current study was to evaluate functional cortical hemodynamic activity during memory tasks in postmenopausal PwDM. Functional Near Infrared Spectroscopy (fNIRS) was used to monitor oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) during memory-based tasks in a cross-sectional sample of postmenopausal women with DM. Twenty-one community-dwelling DM females (age = 65 ± 6 years) and twenty-one age- and sex-matched healthy controls (age = 66 ± 6 years) were evaluated. Working memory performance (via N-back) was evaluated while study participants donned cortical fNIRS. Health state, metabolic data, and menopausal status data were also collected. Deficits in working memory accuracy were found in the DM group as compared to controls. Differences in HbO responses emerged in the DM group. The DM group exhibited altered PFC activity magnitudes and increased functional cortical activity across ROIs compared to controls. HbO and HbR responses were not associated with worsened health state measures. These data indicate a shift in cortical activity patterns with memory deficits in postmenopausal PwDM. This DM-specific shift of HbO is a novel finding that is unlikely to be detected by fMRI. This underscores the value of using non-MRI-based neuroimaging techniques to evaluate cortical hemodynamic function to detect early mild cognitive impairment.


Assuntos
Diabetes Mellitus Tipo 2 , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Pós-Menopausa , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Estudos Transversais , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Memória de Curto Prazo/fisiologia
4.
Neuroimage ; 243: 118560, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506917

RESUMO

There is a growing body of evidence based on adult neuroimaging that suggests that the brain adapts to bilingual experiences to support language proficiency. The Adolescent Brain Cognitive Development (ABCD) Study is a useful source of data for evaluating this claim during childhood, as it involves data from a large sample of American children. Using the baseline ABCD Study data collected at ages nine and ten, the goal of this study was to identify differences in cortical thickness between bilinguals and monolinguals and to evaluate how variability in English vocabulary and English use within bilinguals might explain these group differences. We identified bilingual participants as children who spoke a non-English language and were exposed to the non-English language at home. We then identified a matched sample of English monolingual participants based on age, sex, pubertal status, parent education, household income, non-verbal IQ, and handedness. Bilinguals had thinner cortex than monolinguals in widespread cortical regions. Within bilinguals, more English use was associated with greater frontal and parietal cortical thickness; greater English vocabulary was associated with greater frontal and temporal cortical thickness. These findings replicate and extend previous research with bilingual children and highlight unexplained cortical thickness differences between bilinguals and monolinguals.


Assuntos
Espessura Cortical do Cérebro , Idioma , Multilinguismo , Lobo Temporal/fisiologia , Criança , Cognição , Feminino , Humanos , Estudos Longitudinais , Masculino , Percepção da Fala , Vocabulário
5.
Hum Brain Mapp ; 41(2): 484-502, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600019

RESUMO

Although researchers generally agree that a certain set of brain areas underlie bilingual language processing, there is discrepancy regarding what effect timing of language acquisition has on these regions. We aimed to investigate the neuroanatomical correlates of age of acquisition (AoA), which has been examined previously, but with inconsistent results, likely influenced by methodological differences across studies. We analyzed gray matter density, volume, and thickness using whole-brain linear models in 334 bilinguals and monolinguals. Neuroanatomical correlates of AoA differed depending on gray matter metric. Relative to early bilinguals, late bilinguals had thicker cortex in language processing and cognitive control regions, and greater density in multiple frontal areas and the right middle temporal and supramarginal gyri. Early bilinguals had greater volume than late bilinguals in the left middle temporal gyrus. Overall, volume was the least sensitive to AoA-related differences. Multiple regions not classically implicated in dual-language processing were also found, which highlights the important role of whole-brain analyses in neuroscience. This is the first study to investigate AoA and gray matter thickness, volume, and density all in the same sample. We conclude that cognitive models of bilingualism should consider the roles of development and neuroanatomical metric in driving our understanding of bilingual and monolingual language organization.


Assuntos
Córtex Cerebral/anatomia & histologia , Substância Cinzenta/anatomia & histologia , Desenvolvimento Humano/fisiologia , Multilinguismo , Psicolinguística , Adolescente , Adulto , Fatores Etários , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Brain Cogn ; 134: 103-109, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30528309

RESUMO

Research suggests that bilingualism is associated with increases in parietal gray matter volume (GMV). These parietal GMV increases are a source of variability that may help explain the reported bilingual/monolingual differences in attentional control. The current study examined how parietal GMV variability and a participant's language background predicted Simon task performance. GMV measures were extracted from the bilateral angular and supramarginal gyri from participants' MRI scans using Freesurfer image analysis suite. Contrary to expectations, bilinguals did not outperform monolinguals on the Simon task. In fact, bilinguals had slower response times across all conditions of the task (incongruent, congruent, and neutral) than monolinguals. In addition, GMV in the right supramarginal gyrus was negatively associated with response times for congruent trials for bilinguals, and positively associated with these response times for monolinguals. The difference in the relationships between parietal GMV and task performance suggests that bilinguals rely on spatial attention to complete the Simon task, while monolinguals may rely on verbal attention. These results help to connect bilingual advantages in tasks requiring spatial attention (e.g., attentional control) with bilingual disadvantages in tasks requiring verbal attention (e.g., verbal fluency).


Assuntos
Idioma , Multilinguismo , Lobo Parietal/diagnóstico por imagem , Adolescente , Adulto , Atenção/fisiologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Tempo de Reação/fisiologia , Adulto Jovem
7.
J Neurolinguistics ; 49: 214-223, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30636843

RESUMO

There has been virtual explosion of studies published in cognitive neuroscience primarily due to increased accessibility to neuroimaging methods, which has led to different approaches in interpretation. This review seeks to synthesize both developmental approaches and more recent views that consider neuroimaging. The ways in which Neuronal Recycling, Neural Reuse, and Language as Shaped by the Brain perspectives seek to clarify the brain bases of cognition will be addressed. Neuroconstructivism as an additional explanatory framework which seeks to bind brain and cognition to development will also be presented. Despite sharing similar goals, the four approaches to understanding how the brain is related to cognition have generally been considered separately. However, we propose that all four perspectives argue for a form of Emergentism in which combinations of smaller elements can lead to a greater whole. This discussion seeks to provide a synthesis of these approaches that leads to the emergence of a theory itself. We term this new synthesis Neurocomputational Emergentism (or Neuromergentism for short).

8.
Neuroimage ; 165: 278-284, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061528

RESUMO

A previous fMRI study of novel speech sound learning, tied to the methods and results presented here, identified groups of advanced and novice learners and related their classification to neural activity. To complement those results and better elucidate the role of the entire neural system in speech learning, the current study analyzed the neuroanatomical data with the goals of 1) uncovering the regions of interest (ROIs) that predicted speech learning performance in a sample of monolingual and bilingual adults, and 2) examining if the relationship between cortical thickness from selected ROIs and individual learning ability depends on language group. The ROIs selected were brain regions well-established in the literature as areas associated with language and speech processing (i.e., Transverse Superior Temporal Gyrus, anterior insula and posterior insula, all bilaterally). High-resolution brain scans (T1-weighted) were acquired from 23 Spanish-English bilinguals and 20 English monolingual adults. The thickness of the left anterior insula significantly predicted speech sound learning ability in bilinguals but not monolinguals. These results suggest that aptitude for learning a new language is associated with variations in the cortical thickness of the left anterior insula in bilinguals. These findings may provide insight into the higher order mechanisms involved in speech perception and advance our understanding of the unique strategies employed by the bilingual brain during language learning.


Assuntos
Aptidão/fisiologia , Córtex Cerebral/anatomia & histologia , Aprendizagem/fisiologia , Multilinguismo , Fala/fisiologia , Adolescente , Adulto , Córtex Cerebral/fisiologia , Feminino , Humanos , Desenvolvimento da Linguagem , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
9.
Dev Sci ; 21(5): e12654, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29480569

RESUMO

The goal of the present study was to examine differences in cortical thickness, cortical surface area, and subcortical volume between bilingual children who are highly proficient in two languages (i.e., English and Spanish) and bilingual children who are mainly proficient in one of the languages (i.e., Spanish). All children (N = 49) learned Spanish as a native language (L1) at home and English as a second language (L2) at school. Proficiency of both languages was assessed using the standardized Woodcock Language Proficiency Battery. Five-minute high-resolution anatomical scans were acquired with a 3-Tesla scanner. The degree of discrepancy between L1 and L2 proficiency was used to classify the children into two groups: children with balanced proficiency and children with unbalanced proficiency. The groups were comparable on language history, parental education, and other variables except English proficiency. Values of cortical thickness and surface area of the transverse STG, IFG-pars opercularis, and MFG, as well as subcortical volume of the caudate and putamen, were extracted from FreeSurfer. Results showed that children with balanced bilingualism had thinner cortices of the left STG, left IFG, left MFG and a larger bilateral putamen, whereas unbalanced bilinguals showed thicker cortices of the same regions and a smaller putamen. Additionally, unbalanced bilinguals with stronger foreign accents in the L2 showed reduced surface areas of the MFG and STS bilaterally. The results suggest that balanced/unbalanced bilingualism is reflected in different neuroanatomical characteristics that arise from biological and/or environmental factors.


Assuntos
Núcleo Caudado/fisiologia , Desenvolvimento da Linguagem , Aprendizagem/fisiologia , Multilinguismo , Putamen/fisiologia , Adolescente , Fatores Etários , Área de Broca/fisiologia , Criança , Feminino , Hispânico ou Latino , Humanos , Idioma , Masculino
10.
J Neurolinguistics ; 46: 69-77, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30038460

RESUMO

Genetic variants related to dopamine functioning (e.g., the ANKK1/TaqIa polymorphism within the DRD2 gene and the Val158Met polymorphism within the COMT gene) have previously been shown to predict cognitive flexibility and learning (e.g., Colzato et al., 2010; Stelzel et al., 2010). Additionally, researchers have found that these genetic variants may also predict second language learning (Mamiya et al., 2016), although this relationship may change across the lifespan (Sugiura et al., 2011). The current study examined the role of the ANKK1/TaqIa and Val158Met polymorphisms along with age of second language acquisition (AoA) in order to predict levels of bilingual proficiency in Spanish-English bilinguals. Results indicated a three-way interaction such that the relationship between the genetic variants and bilingual proficiency depended on AoA. At earlier AoAs, having the genetic variant associated with higher levels of subcortical dopamine (A1+) predicted the highest levels of bilingual proficiency. At later AoAs, individuals with the genetic variant associated with cortical dopamine levels that are balanced between stability and flexibility (Val/Met) predicted the highest levels of bilingual proficiency. These results fit with theories about the development of language as a subcortical process early in life and as a cortical process later in life (Hernandez & Li, 2007), as well as the importance of both stability and flexibility in bilingual language development (Green & Abutalebi, 2013). Finally, this study raises questions about the direction of causality between bilingualism and cognitive control, which is central to the debate over the "bilingual advantage."

11.
J Neurolinguistics ; 42: 1-11, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28579694

RESUMO

Bilingualism represents an interesting model of possible experience-dependent alterations in brain structure. The current study examines whether interhemispheric adaptations in brain structure are associated with bilingualism. Corpus callosum volume and cortical thickness asymmetry across 13 regions of interest (selected to include critical language and bilingual cognitive control areas) were measured in a sample of Spanish-English bilinguals and age- and gender-matched monolingual individuals (N = 39 per group). Cortical thickness asymmetry of the anterior cingulate region differed across groups, with thicker right than left cortex for bilinguals and the reverse for monolinguals. In addition, two adjacent regions of the corpus callosum (mid-anterior and central) had greater volume in bilinguals. The findings suggest that structural indices of interhemispheric organization in a critical cognitive control region are sensitive to variations in language experience.

12.
J Neurolinguistics ; 40: 112-127, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28082765

RESUMO

Bilingual language control may involve cognitive control, including inhibition and switching. These types of control have been previously associated with neural activity in the inferior frontal gyrus (IFG) and the anterior cingulate cortex (ACC). In previous studies, the DRD2 gene, related to dopamine availability in the striatum, has been found to play a role in neural activity during cognitive control tasks, with carriers of the gene's A1 allele showing different patterns of activity in inferior frontal regions during cognitive control tasks than non-carriers. The current study sought to extend these findings to the domain of bilingual language control. Forty-nine Spanish-English bilinguals participated in this study by providing DNA samples through saliva, completing background questionnaires, and performing a language production task (picture-naming), a non-verbal inhibition task (Simon task), and a non-verbal switching task (shape-color task) in the fMRI scanner. The fMRI data were analyzed to determine whether variation in the genetic background or bilingual language background predicts neural activity in the IFG and ACC during these three tasks. Results indicate that genetic and language background variables predicted neural activity in the IFG during English picture naming. Variation in only the genetic background predicted neural activity in the ACC during the shape-color switching task; variation in only the language background predicted neural activity in the ACC and IFG during the Simon task. These results suggest that variation in the DRD2 gene should not be ignored when drawing conclusions about bilingual verbal and non-verbal cognitive control.

13.
J Neurolinguistics ; 35: 109-119, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30270989

RESUMO

In recent years there has been considerable debate about the presence or absence of a bilingual advantage in tasks that involve cognitive control. Our previous work has established evidence of differences in brain activity between monolinguals and bilinguals in both word learning and in the avoidance of interference during a picture selection task. Recent models of cognitive control have highlighted the importance of a set of neural structures that may show differential tuning due to exposure to two languages. There is also evidence that genetic factors play a role in the availability of dopamine in neural structures involved in cognitive control. Thus, it is important to investigate whether there are interactions effects generating variability in language acquisition when attributed to genetic (e.g., characteristics of dopamine turnover) and environmental (e.g., exposure to two languages) factors. Here preliminary results from genotyping of a sample of bilingual and monolingual individuals are reported. They reveal different distributions in allele frequencies of the DRD2/ANKK1 taq1A polymorphism. These results bring up the possibility that bilinguals may exhibit additional flexibility due to differences in genetic characteristics relative to monolinguals. Future studies should consider genotype as a possible contributing factor to the development of cognitive control across individuals with different language learning histories.

14.
Brain Cogn ; 87: 122-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24732956

RESUMO

The present functional magnetic resonance imaging study examined the neural response to familiar and unfamiliar, sport and non-sport environmental sounds in expert and novice athletes. Results revealed differential neural responses dependent on sports expertise. Experts had greater neural activation than novices in focal sensorimotor areas such as the supplementary motor area, and pre- and postcentral gyri. Novices showed greater activation than experts in widespread areas involved in perception (i.e. supramarginal, middle occipital, and calcarine gyri; precuneus; inferior and superior parietal lobules), and motor planning and processing (i.e. inferior frontal, middle frontal, and middle temporal gyri). These between-group neural differences also appeared as an expertise effect within specific conditions. Experts showed greater activation than novices during the sport familiar condition in regions responsible for auditory and motor planning, including the inferior frontal gyrus and the parietal operculum. Novices only showed greater activation than experts in the supramarginal gyrus and pons during the non-sport unfamiliar condition, and in the middle frontal gyrus during the sport unfamiliar condition. These results are consistent with the view that expert athletes are attuned to only the most familiar, highly relevant sounds and tune out unfamiliar, irrelevant sounds. Furthermore, these findings that athletes show activation in areas known to be involved in action planning when passively listening to sounds suggests that auditory perception of action can lead to the re-instantiation of neural areas involved in producing these actions, especially if someone has expertise performing the actions.


Assuntos
Atletas , Percepção Auditiva/fisiologia , Córtex Motor/fisiologia , Córtex Somatossensorial/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
16.
Dev Cogn Neurosci ; 65: 101334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154377

RESUMO

Research suggests that bilingual children experience an extension or delay in the closing of the sensitive/critical period of language development due to multiple language exposure. Moreover, bilingual experience may impact the development of subcortical regions, although these conclusions are drawn from research with adults, as there is a scarcity of research during late childhood and early adolescence. The current study included 1215 bilingual and 5894 monolingual children from the ABCD Study to examine the relationship between subcortical volume and English vocabulary in heritage Spanish bilingual and English monolingual children, as well as volumetric differences between the language groups. We also examined the unique effects of language usage in bilingual children's subcortical volumes. In general, bilingual children had less cerebellar volume and greater volume in the putamen, thalamus, and globus pallidus than monolingual children. English vocabulary was positively related to volume in the cerebellum, thalamus, caudate, putamen, nucleus accumbens, and right pallidum in all children. Moreover, the positive relationship between vocabulary and volume in the nucleus accumbens was stronger for monolingual adolescents than bilingual adolescents. The results are somewhat in line with existing literature on the dynamic volume adaptation of subcortical brain regions due to bilingual development and experience. Future research is needed to further explore these regions longitudinally across development to examine structural changes in bilingual brains.


Assuntos
Multilinguismo , Adolescente , Humanos , Criança , Idioma , Desenvolvimento da Linguagem , Vocabulário , Cerebelo
17.
Neuroimage ; 67: 101-10, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23194816

RESUMO

The purpose of this study was to examine the cognitive control mechanisms in adult English speaking monolinguals compared to early sequential Spanish-English bilinguals during the initial stages of novel word learning. Functional magnetic resonance imaging during a lexico-semantic task after only 2h of exposure to novel German vocabulary flashcards showed that monolinguals activated a broader set of cortical control regions associated with higher-level cognitive processes, including the supplementary motor area (SMA), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC), as well as the caudate, implicated in cognitive control of language. However, bilinguals recruited a more localized subcortical network that included the putamen, associated more with motor control of language. These results suggest that experience managing multiple languages may differentiate the learning strategy and subsequent neural mechanisms of cognitive control used by bilinguals compared to monolinguals in the early stages of novel word learning.


Assuntos
Mapeamento Encefálico , Cognição/fisiologia , Idioma , Multilinguismo , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Aprendizagem Verbal/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
18.
Neuroimage ; 67: 51-63, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23123633

RESUMO

The goal of the present study is to reveal how the neural mechanisms underlying non-native speech perception change throughout childhood. In a pre-attentive listening fMRI task, English monolingual and Spanish-English bilingual children - divided into groups of younger (6-8yrs) and older children (9-10yrs) - were asked to watch a silent movie while several English syllable combinations played through a pair of headphones. Two additional groups of monolingual and bilingual adults were included in the analyses. Our results show that the neural mechanisms supporting speech perception throughout development differ in monolinguals and bilinguals. While monolinguals recruit perceptual areas (i.e., superior temporal gyrus) in early and late childhood to process native speech, bilinguals recruit perceptual areas (i.e., superior temporal gyrus) in early childhood and higher-order executive areas in late childhood (i.e., bilateral middle frontal gyrus and bilateral inferior parietal lobule, among others) to process non-native speech. The findings support the Perceptual Assimilation Model and the Speech Learning Model and suggest that the neural system processes phonological information differently depending on the stage of L2 speech learning.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/fisiologia , Função Executiva/fisiologia , Multilinguismo , Percepção da Fala/fisiologia , Análise e Desempenho de Tarefas , Aprendizagem Verbal/fisiologia , Criança , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia
19.
Transl Issues Psychol Sci ; 9(4): 364-379, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125719

RESUMO

Research suggests that bilingual experience is associated with gray matter changes, such that initial language gains are associated with expansion and language expertise is associated with renormalization. Previous studies on language proficiency development primarily focused on between-subjects, quasiexperimental comparisons of monolinguals and bilinguals. This study proposes a new paradigm to examine language expertise and cortical thickness within heritage bilinguals (n = 215), as well as between bilinguals and monolinguals (n = 145), using data combined from eight previous magnetic resonance imaging studies. In general, results highlight variability within bilinguals, finding relationships between cortical thickness and English proficiency that are relatively consistent within monolinguals, but inconsistent within bilinguals. In all participants, higher levels of proficiency in English-monolinguals' only language and bilinguals' second but stronger language-were negatively related to cortical thickness. In bilinguals, higher proficiency in the weaker, albeit first learned, language was positively related to cortical thickness. Moreover, there was an interaction between language group and English proficiency in predicting cortical thickness, such that the relationship between proficiency and thickness was stronger in monolinguals than in bilinguals. Findings also demonstrate that the regions associated with language expertise differ between bilinguals and monolinguals. Future directions for cognitive-developmental neuroscience research in bilinguals are suggested, particularly the longitudinal examination of cortical changes in relation to bilingual experiences.

20.
Mind Brain Educ ; 17(2): 149-160, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770227

RESUMO

English Learners (ELs), students from non-English-speaking backgrounds, are a fast-growing, understudied, group of students in the U.S. with unique learning challenges. Cognitive flexibility-the ability to switch between task demands with ease-may be an important factor in learning for ELs as they have to manage learning in their non-dominant language and access knowledge in multiple languages. We used functional MRI to measure cognitive flexibility brain activity in a group of Hispanic middle school ELs (N = 63) and related it to their academic skills. We found that brain engagement during the cognitive flexibility task was related to both out-of-scanner reading and math measures. These relationships were observed across the brain, including in cognitive control, attention, and default mode networks. This work suggests the real-world importance of cognitive flexibility for adolescent ELs, where individual differences in brain engagement were associated with educational outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA