Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Struct Biol ; 214(3): 107872, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660516

RESUMO

Image processing in cryogenic electron tomography (cryoET) is currently at a similar state as Single Particle Analysis (SPA) in cryogenic electron microscopy (cryoEM) was a few years ago. Its data processing workflows are far from being well defined and the user experience is still not smooth. Moreover, file formats of different software packages and their associated metadata are not standardized, mainly since different packages are developed by different groups, focusing on different steps of the data processing pipeline. The Scipion framework, originally developed for SPA (de la Rosa-Trevín et al., 2016), has a generic python workflow engine that gives it the versatility to be extended to other fields, as demonstrated for model building (Martínez et al., 2020). In this article, we provide an extension of Scipion based on a set of tomography plugins (referred to as ScipionTomo hereafter), with a similar purpose: to allow users to be focused on the data processing and analysis instead of having to deal with multiple software installation issues and the inconvenience of switching from one to another, converting metadata files, managing possible incompatibilities, scripting (writing a simple program in a language that the computer must convert to machine language each time the program is run), etcetera. Additionally, having all the software available in an integrated platform allows comparing the results of different algorithms trying to solve the same problem. In this way, the commonalities and differences between estimated parameters shed light on which results can be more trusted than others. ScipionTomo is developed by a collaborative multidisciplinary team composed of Scipion team engineers, structural biologists, and in some cases, the developers whose software packages have been integrated. It is open to anyone in the field willing to contribute to this project. The result is a framework extension that combines the acquired knowledge of Scipion developers in close collaboration with third-party developers, and the on-demand design of functionalities requested by beta testers applying this solution to actual biological problems.


Assuntos
Tomografia com Microscopia Eletrônica , Software , Algoritmos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
2.
Faraday Discuss ; 240(0): 210-227, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35861059

RESUMO

The number of maps deposited in public databases (Electron Microscopy Data Bank, EMDB) determined by cryo-electron microscopy has quickly grown in recent years. With this rapid growth, it is critical to guarantee their quality. So far, map validation has primarily focused on the agreement between maps and models. From the image processing perspective, the validation has been mostly restricted to using two half-maps and the measurement of their internal consistency. In this article, we suggest that map validation can be taken much further from the point of view of image processing if 2D classes, particles, angles, coordinates, defoci, and micrographs are also provided. We present a progressive validation scheme that qualifies a result validation status from 0 to 5 and offers three optional qualifiers (A, W, and O) that can be added. The simplest validation state is 0, while the most complete would be 5AWO. This scheme has been implemented in a website https://biocomp.cnb.csic.es/EMValidationService/ to which reconstructed maps and their ESI can be uploaded.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica
3.
J Struct Biol ; 213(1): 107695, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421545

RESUMO

The presence of preferred orientations in single particle analysis (SPA) by cryo-Electron Microscopy (cryoEM) is currently one of the hurdles preventing many structural analyses from yielding high-resolution structures. Although the existence of preferred orientations is mostly related to the grid preparation, in this technical note, we show that some image processing algorithms used for angular assignment and three-dimensional (3D) reconstruction are more robust than others to these detrimental conditions. We exemplify this argument with three different data sets in which the presence of preferred orientations hindered achieving a 3D reconstruction without artifacts or, even worse, a 3D reconstruction could never be achieved.


Assuntos
Microscopia Crioeletrônica/métodos , Imagem Individual de Molécula/métodos , Algoritmos , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos
4.
J Mol Biol ; 435(9): 168088, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030648

RESUMO

One of the main purposes of CryoEM Single Particle Analysis is to reconstruct the three-dimensional structure of a macromolecule thanks to the acquisition of many particle images representing different poses of the sample. By estimating the orientation of each projected particle, it is possible to recover the underlying 3D volume by multiple 3D reconstruction methods, usually working either in Fourier or in real space. However, the reconstruction from the projected images works under the assumption that all particles in the dataset correspond to the same conformation of the macromolecule. Although this requisite holds for some macromolecules, it is not true for flexible specimens, leading to motion-induced artefacts in the reconstructed CryoEM maps. In this work, we introduce a new Algebraic Reconstruction Technique called ZART, which is able to include continuous flexibility information during the reconstruction process to improve local resolution and reduce motion blurring. The conformational changes are modelled through Zernike3D polynomials. Our implementation allows for a multiresolution description of the macromolecule adapting itself to the local resolution of the reconstructed map. In addition, ZART has also proven to be a useful algorithm in cases where flexibility is not so dominant, as it improves the overall aspect of the reconstructed maps by improving their local and global resolution.


Assuntos
Processamento de Imagem Assistida por Computador , Imagem Individual de Molécula , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Microscopia Crioeletrônica/métodos , Movimento (Física) , Substâncias Macromoleculares/química , Imageamento Tridimensional/métodos
5.
Nat Commun ; 14(1): 154, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631472

RESUMO

The new developments in Cryo-EM Single Particle Analysis are helping us to understand how the macromolecular structure and function meet to drive biological processes. By capturing many states at the particle level, it is possible to address how macromolecules explore different conformations, information that is classically extracted through 3D classification. However, the limitations of classical approaches prevent us from fully understanding the complete conformational landscape due to the reduced number of discrete states accurately reconstructed. To characterize the whole structural spectrum of a macromolecule, we propose an extension of our Zernike3D approach, able to extract per-image continuous flexibility information directly from a particle dataset. Also, our method can be seamlessly applied to images, maps or atomic models, opening integrative possibilities. Furthermore, we introduce the ZART reconstruction algorithm, which considers the Zernike3D deformation fields to revert particle conformational changes during the reconstruction process, thus minimizing the blurring induced by molecular motions.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Conformação Molecular , Estrutura Molecular , Substâncias Macromoleculares/química
6.
Acta Crystallogr D Struct Biol ; 79(Pt 7): 569-584, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326585

RESUMO

Understanding how structure and function meet to drive biological processes is progressively shifting the cryoEM field towards a more advanced analysis of macromolecular flexibility. Thanks to techniques such as single-particle analysis and electron tomography, it is possible to image a macromolecule in different states, information that can subsequently be extracted through advanced image-processing methods to build a richer approximation of a conformational landscape. However, the interoperability of all of these algorithms remains a challenging task that is left to users, preventing them from defining a single flexible workflow in which conformational information can be addressed by different algorithms. Therefore, in this work, a new framework integrated into Scipion is proposed called the Flexibility Hub. This framework automatically handles intercommunication between different heterogeneity software, simplifying the task of combining the software into workflows in which the quality and the amount of information extracted from flexibility analysis is maximized.


Assuntos
Algoritmos , Software , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Conformação Molecular , Substâncias Macromoleculares/química
7.
Acta Crystallogr D Struct Biol ; 78(Pt 4): 410-423, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362465

RESUMO

Cryo-electron microscopy (cryoEM) has become a well established technique to elucidate the 3D structures of biological macromolecules. Projection images from thousands of macromolecules that are assumed to be structurally identical are combined into a single 3D map representing the Coulomb potential of the macromolecule under study. This article discusses possible caveats along the image-processing path and how to avoid them to obtain a reliable 3D structure. Some of these problems are very well known in the community. These may be referred to as sample-related (such as specimen denaturation at interfaces or non-uniform projection geometry leading to underrepresented projection directions). The rest are related to the algorithms used. While some have been discussed in depth in the literature, such as the use of an incorrect initial volume, others have received much less attention. However, they are fundamental in any data-analysis approach. Chiefly among them, instabilities in estimating many of the key parameters that are required for a correct 3D reconstruction that occur all along the processing workflow are referred to, which may significantly affect the reliability of the whole process. In the field, the term overfitting has been coined to refer to some particular kinds of artifacts. It is argued that overfitting is a statistical bias in key parameter-estimation steps in the 3D reconstruction process, including intrinsic algorithmic bias. It is also shown that common tools (Fourier shell correlation) and strategies (gold standard) that are normally used to detect or prevent overfitting do not fully protect against it. Alternatively, it is proposed that detecting the bias that leads to overfitting is much easier when addressed at the level of parameter estimation, rather than detecting it once the particle images have been combined into a 3D map. Comparing the results from multiple algorithms (or at least, independent executions of the same algorithm) can detect parameter bias. These multiple executions could then be averaged to give a lower variance estimate of the underlying parameters.


Assuntos
Imageamento Tridimensional , Viés , Consenso , Microscopia Crioeletrônica/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes
8.
J Vis Exp ; (171)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34125107

RESUMO

Cryo-electron microscopy has become one of the most important tools in biological research to reveal the structural information of macromolecules at near-atomic resolution. In single-particle analysis, the vitrified sample is imaged by an electron beam and the detectors at the end of the microscope column produce movies of that sample. These movies contain thousands of images of identical particles in random orientations. The data need to go through an image processing workflow with multiple steps to obtain the final 3D reconstructed volume. The goal of the image processing workflow is to identify the acquisition parameters to be able to reconstruct the specimen under study. Scipion provides all the tools to create this workflow using several image processing packages in an integrative framework, also allowing the traceability of the results. In this article the whole image processing workflow in Scipion is presented and discussed with data coming from a real test case, giving all the details necessary to go from the movies obtained by the microscope to a high resolution final 3D reconstruction. Also, the power of using consensus tools that allow combining methods, and confirming results along every step of the workflow, improving the accuracy of the obtained results, is discussed.


Assuntos
Processamento de Imagem Assistida por Computador , Imagem Individual de Molécula , Microscopia Crioeletrônica , Substâncias Macromoleculares , Fluxo de Trabalho
9.
J Struct Biol X ; 4: 100037, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024955

RESUMO

Electron tomography is a technique to obtain three-dimensional structural information of samples. However, the technique is limited by shifts occurring during acquisition that need to be corrected before the reconstruction process. In 2009, we proposed an approach for post-acquisition alignment of tilt series images. This approach was marker-free, based on patch tracking and integrated in free software. Here, we present improvements to the method to make it more reliable, stable and accurate. In addition, we modified the image formation model underlying the alignment procedure to include different deformations occurring during acquisition. We propose a new way to correct these computed deformations to obtain reconstructions with reduced artifacts. The new approach has demonstrated to improve the quality of the final 3D reconstruction, giving access to better defined structures for different transmission electron tomography methods: resin embedded STEM-tomography and cryo-TEM tomography. The method is freely available in TomoJ software.

10.
Case Rep Med ; 2010: 961758, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20224798

RESUMO

Therapeutic options for recto-vaginal fistula in the setting of Crohn's disease are limited and many data are available in the literature. The manuscript describes the history of a patient who has been the pioneer of our Clinical Trials in treating this disease in fistulizing Crohn's disease environment. We believe it is the first time that a patient with this disease has been treated by adipose-derived stem cells in allogeneic form. The conclusion of our study with Mary is that the use of mesenchymal stem cells derived from adipose tissue is secure, either in autologous or allogeneic form. Furthermore, we have proved that if we use multi-dose and multiple applications on a patient, it does not produce any adverse effect, which confirms us the safety of using these cells in patients at least in the fistulizing Crohn's disease environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA