Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 161(1): 29-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37938346

RESUMO

Increase of collagen content and reorganization characterizes fibrosis but quantifying the latter remains challenging. Spatially complex structures are often analyzed via the fractal dimension; however, established methods for calculating this quantity either provide a single dimension for an entire object or a spatially distributed dimension that only considers binary images. These neglect valuable information related to collagen density in images of fibrotic tissue. We sought to develop a fractal analysis that can be applied to 3-dimensional (3D) images of fibrotic tissue. A fractal dimension map for each image was calculated by determining a single fractal dimension for a small area surrounding each image pixel, using fiber thickness as the third dimension. We found that this local fractal dimension increased with age and with progression of fibrosis regardless of collagen content. Our new method of distributed 3D fractal analysis can thus distinguish between changes in collagen content and organization induced by fibrosis.


Assuntos
Colágeno , Fractais , Humanos , Fibrose
2.
Respir Res ; 25(1): 37, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238778

RESUMO

Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial/métodos , Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/patologia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
3.
J Biomech Eng ; 146(7)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183223

RESUMO

Skin undergoes mechanical alterations due to changes in the composition and structure of the collagenous dermis with aging. Previous studies have conflicting findings, with both increased and decreased stiffness reported for aging skin. The underlying structure-function relationships that drive age-related changes are complex and difficult to study individually. One potential contributor to these variations is the accumulation of nonenzymatic crosslinks within collagen fibers, which affect dermal collagen remodeling and mechanical properties. Specifically, these crosslinks make individual fibers stiffer in their plastic loading region and lead to increased fragmentation of the collagenous network. To better understand the influence of these changes, we investigated the impact of nonenzymatic crosslink changes on the dermal microstructure using discrete fiber networks representative of the dermal microstructure. Our findings suggest that stiffening the plastic region of collagen's mechanical response has minimal effects on network-level stiffness and failure stresses. Conversely, simulating fragmentation through a loss of connectivity substantially reduces network stiffness and failure stress, while increasing stretch ratios at failure.


Assuntos
Envelhecimento da Pele , Estresse Mecânico , Matriz Extracelular , Colágeno , Pele
4.
Am J Physiol Cell Physiol ; 324(4): C941-C950, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878841

RESUMO

We hypothesized that a system that possesses the capacity for ongoing maintenance of its tissues will necessarily also have the capacity to self-heal following a perturbation. We used an agent-based model of tissue maintenance to investigate this idea, and in particular to determine the extent to which the current state of the tissue must influence cell behavior in order for tissue maintenance and self-healing to be stable. We show that a mean level of tissue density is robustly maintained when catabolic agents digest tissue at a rate proportional to local tissue density, but that the spatial heterogeneity of the tissue at homeostasis increases with the rate at which tissue is digested. The rate of self-healing is also increased by increasing either the amount of tissue removed or deposited at each time step by catabolic or anabolic agents, respectively, and by increasing the density of both agent types on the tissue. We also found that tissue maintenance and self-healing are stable with an alternate rule in which cells move preferentially to tissue regions of low density. The most basic form of self-healing can thus be achieved with cells that follow very simple rules of behavior, provided these rules are based in some way on the current state of the local tissue. Straightforward mechanisms can accelerate the rate of self-healing, as might be beneficial to the organism.


Assuntos
Homeostase , Modelos Biológicos
5.
Anesthesiology ; 139(6): 815-826, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566686

RESUMO

BACKGROUND: Bedside electrical impedance tomography could be useful to visualize evolving pulmonary perfusion distributions when acute respiratory distress syndrome worsens or in response to ventilatory and positional therapies. In experimental acute respiratory distress syndrome, this study evaluated the agreement of electrical impedance tomography and dynamic contrast-enhanced computed tomography perfusion distributions at two injury time points and in response to increased positive end-expiratory pressure (PEEP) and prone position. METHODS: Eleven mechanically ventilated (VT 8 ml · kg-1) Yorkshire pigs (five male, six female) received bronchial hydrochloric acid (3.5 ml · kg-1) to invoke lung injury. Electrical impedance tomography and computed tomography perfusion images were obtained at 2 h (early injury) and 24 h (late injury) after injury in supine position with PEEP 5 and 10 cm H2O. In eight animals, electrical impedance tomography and computed tomography perfusion imaging were also conducted in the prone position. Electrical impedance tomography perfusion (QEIT) and computed tomography perfusion (QCT) values (as percentages of image total) were compared in eight vertical regions across injury stages, levels of PEEP, and body positions using mixed-effects linear regression. The primary outcome was agreement between QEIT and QCT, defined using limits of agreement and Pearson correlation coefficient. RESULTS: Pao2/Fio2 decreased over the course of the experiment (healthy to early injury, -253 [95% CI, -317 to -189]; early to late injury, -88 [95% CI, -151 to -24]). The limits of agreement between QEIT and QCT were -4.66% and 4.73% for the middle 50% quantile of average regional perfusion, and the correlation coefficient was 0.88 (95% CI, 0.86 to 0.90]; P < 0.001). Electrical impedance tomography and computed tomography showed similar perfusion redistributions over injury stages and in response to increased PEEP. QEIT redistributions after positional therapy underestimated QCT in ventral regions and overestimated QCT in dorsal regions. CONCLUSIONS: Electrical impedance tomography closely approximated computed tomography perfusion measures in experimental acute respiratory distress syndrome, in the supine position, over injury progression and with increased PEEP. Further validation is needed to determine the accuracy of electrical impedance tomography in measuring perfusion redistributions after positional changes.


Assuntos
Síndrome do Desconforto Respiratório , Tomografia Computadorizada por Raios X , Masculino , Feminino , Suínos , Animais , Impedância Elétrica , Síndrome do Desconforto Respiratório/terapia , Pulmão , Perfusão , Tomografia/métodos
6.
Methods ; 205: 200-209, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817338

RESUMO

BACKGROUND: Lesion segmentation is a critical step in medical image analysis, and methods to identify pathology without time-intensive manual labeling of data are of utmost importance during a pandemic and in resource-constrained healthcare settings. Here, we describe a method for fully automated segmentation and quantification of pathological COVID-19 lung tissue on chest Computed Tomography (CT) scans without the need for manually segmented training data. METHODS: We trained a cycle-consistent generative adversarial network (CycleGAN) to convert images of COVID-19 scans into their generated healthy equivalents. Subtraction of the generated healthy images from their corresponding original CT scans yielded maps of pathological tissue, without background lung parenchyma, fissures, airways, or vessels. We then used these maps to construct three-dimensional lesion segmentations. Using a validation dataset, Dice scores were computed for our lesion segmentations and other published segmentation networks using ground truth segmentations reviewed by radiologists. RESULTS: The COVID-to-Healthy generator eliminated high Hounsfield unit (HU) voxels within pulmonary lesions and replaced them with lower HU voxels. The generator did not distort normal anatomy such as vessels, airways, or fissures. The generated healthy images had higher gas content (2.45 ± 0.93 vs 3.01 ± 0.84 L, P < 0.001) and lower tissue density (1.27 ± 0.40 vs 0.73 ± 0.29 Kg, P < 0.001) than their corresponding original COVID-19 images, and they were not significantly different from those of the healthy images (P < 0.001). Using the validation dataset, lesion segmentations scored an average Dice score of 55.9, comparable to other weakly supervised networks that do require manual segmentations. CONCLUSION: Our CycleGAN model successfully segmented pulmonary lesions in mild and severe COVID-19 cases. Our model's performance was comparable to other published models; however, our model is unique in its ability to segment lesions without the need for manual segmentations.


Assuntos
COVID-19 , Processamento de Imagem Assistida por Computador , COVID-19/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
7.
Curr Opin Crit Care ; 28(3): 302-307, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653251

RESUMO

PURPOSE OF REVIEW: Lung imaging is a cornerstone of the management of patients admitted to the intensive care unit (ICU), providing anatomical and functional information on the respiratory system function. The aim of this review is to provide an overview of mechanisms and applications of conventional and emerging lung imaging techniques in critically ill patients. RECENT FINDINGS: Chest radiographs provide information on lung structure and have several limitations in the ICU setting; however, scoring systems can be used to stratify patient severity and predict clinical outcomes. Computed tomography (CT) is the gold standard for assessment of lung aeration but requires moving the patients to the CT facility. Dual-energy CT has been recently applied to simultaneous study of lung aeration and perfusion in patients with respiratory failure. Lung ultrasound has an established role in the routine bedside assessment of ICU patients, but has poor spatial resolution and largely relies on the analysis of artifacts. Electrical impedance tomography is an emerging technique capable of depicting ventilation and perfusion at the bedside and at the regional level. SUMMARY: Clinicians should be confident with the technical aspects, indications, and limitations of each lung imaging technique to improve patient care.


Assuntos
Pulmão , Imagem de Perfusão , Humanos , Pulmão/diagnóstico por imagem , Respiração , Respiração Artificial , Tomografia Computadorizada por Raios X
8.
J Clin Monit Comput ; 36(5): 1461-1477, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34910285

RESUMO

Measurement of respiratory impedance ([Formula: see text]) in intubated patients requires accurate compensation for pressure losses across the endotracheal tube (ETT). In this study, we compared time-domain (TD), frequency-domain (FD) and combined time-/frequency-domain (FT) methods for ETT compensation. We measured total impedance ([Formula: see text]) of a test lung in series with three different ETT sizes, as well as in three intubated porcine subjects. Pressure measurement at the distal end of the ETT was used to determine the true [Formula: see text]. For TD compensation, pressure distal to the ETT was obtained based on its resistive and inertial properties, and the corresponding [Formula: see text] was estimated. For FD compensation, impedance of the isolated ETT was obtained from oscillatory flow and pressure waveforms, and then subtracted from [Formula: see text]. For TF compensation, the nonlinear resistive properties of the ETT were subtracted from the proximal pressure measurement, from which the linear resistive and inertial ETT properties were removed in the frequency-domain to obtain [Formula: see text]. The relative root mean square error between the actual and estimated [Formula: see text] ([Formula: see text]) showed that TD compensation yielded the least accurate estimates of [Formula: see text] for the in vitro experiments, with small deviations observed at higher frequencies. The FD and TF compensations yielded estimates of [Formula: see text] with similar accuracies. For the porcine subjects, no significant differences were observed in [Formula: see text] across compensation methods. FD and TF compensation of the ETT may allow for accurate oscillometric estimates of [Formula: see text] in intubated subjects, while avoiding the difficulties associated with direct tracheal pressure measurement.


Assuntos
Intubação Intratraqueal , Traqueia , Animais , Impedância Elétrica , Humanos , Oscilometria , Taxa Respiratória , Suínos
9.
Crit Care Med ; 49(10): e1015-e1024, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33938714

RESUMO

OBJECTIVES: It is not known how lung injury progression during mechanical ventilation modifies pulmonary responses to prone positioning. We compared the effects of prone positioning on regional lung aeration in late versus early stages of lung injury. DESIGN: Prospective, longitudinal imaging study. SETTING: Research imaging facility at The University of Pennsylvania (Philadelphia, PA) and Medical and Surgical ICUs at Massachusetts General Hospital (Boston, MA). SUBJECTS: Anesthetized swine and patients with acute respiratory distress syndrome (acute respiratory distress syndrome). INTERVENTIONS: Lung injury was induced by bronchial hydrochloric acid (3.5 mL/kg) in 10 ventilated Yorkshire pigs and worsened by supine nonprotective ventilation for 24 hours. Whole-lung CT was performed 2 hours after hydrochloric acid (Day 1) in both prone and supine positions and repeated at 24 hours (Day 2). Prone and supine images were registered (superimposed) in pairs to measure the effects of positioning on the aeration of each tissue unit. Two patients with early acute respiratory distress syndrome were compared with two patients with late acute respiratory distress syndrome, using electrical impedance tomography to measure the effects of body position on regional lung mechanics. MEASUREMENTS AND MAIN RESULTS: Gas exchange and respiratory mechanics worsened over 24 hours, indicating lung injury progression. On Day 1, prone positioning reinflated 18.9% ± 5.2% of lung mass in the posterior lung regions. On Day 2, position-associated dorsal reinflation was reduced to 7.3% ± 1.5% (p < 0.05 vs Day 1). Prone positioning decreased aeration in the anterior lungs on both days. Although prone positioning improved posterior lung compliance in the early acute respiratory distress syndrome patients, it had no effect in late acute respiratory distress syndrome subjects. CONCLUSIONS: The effects of prone positioning on lung aeration may depend on the stage of lung injury and duration of prior ventilation; this may limit the clinical efficacy of this treatment if applied late.


Assuntos
Lesão Pulmonar/complicações , Decúbito Ventral/fisiologia , Adulto , Idoso , Boston , Feminino , Humanos , Estudos Longitudinais , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Pennsylvania , Respiração com Pressão Positiva/métodos , Estudos Prospectivos , Resultado do Tratamento
10.
Crit Care ; 25(1): 81, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627160

RESUMO

BACKGROUND: There is a paucity of data concerning the optimal ventilator management in patients with COVID-19 pneumonia; particularly, the optimal levels of positive-end expiratory pressure (PEEP) are unknown. We aimed to investigate the effects of two levels of PEEP on alveolar recruitment in critically ill patients with severe COVID-19 pneumonia. METHODS: A single-center cohort study was conducted in a 39-bed intensive care unit at a university-affiliated hospital in Genoa, Italy. Chest computed tomography (CT) was performed to quantify aeration at 8 and 16 cmH2O PEEP. The primary endpoint was the amount of alveolar recruitment, defined as the change in the non-aerated compartment at the two PEEP levels on CT scan. RESULTS: Forty-two patients were included in this analysis. Alveolar recruitment was median [interquartile range] 2.7 [0.7-4.5] % of lung weight and was not associated with excess lung weight, PaO2/FiO2 ratio, respiratory system compliance, inflammatory and thrombophilia markers. Patients in the upper quartile of recruitment (recruiters), compared to non-recruiters, had comparable clinical characteristics, lung weight and gas volume. Alveolar recruitment was not different in patients with lower versus higher respiratory system compliance. In a subgroup of 20 patients with available gas exchange data, increasing PEEP decreased respiratory system compliance (median difference, MD - 9 ml/cmH2O, 95% CI from - 12 to - 6 ml/cmH2O, p < 0.001) and the ventilatory ratio (MD - 0.1, 95% CI from - 0.3 to - 0.1, p = 0.003), increased PaO2 with FiO2 = 0.5 (MD 24 mmHg, 95% CI from 12 to 51 mmHg, p < 0.001), but did not change PaO2 with FiO2 = 1.0 (MD 7 mmHg, 95% CI from - 12 to 49 mmHg, p = 0.313). Moreover, alveolar recruitment was not correlated with improvement of oxygenation or venous admixture. CONCLUSIONS: In patients with severe COVID-19 pneumonia, higher PEEP resulted in limited alveolar recruitment. These findings suggest limiting PEEP strictly to the values necessary to maintain oxygenation, thus avoiding the use of higher PEEP levels.


Assuntos
COVID-19/complicações , Pneumonia Viral/terapia , Respiração com Pressão Positiva , Alvéolos Pulmonares/fisiologia , Idoso , COVID-19/diagnóstico por imagem , COVID-19/epidemiologia , COVID-19/fisiopatologia , Estudos de Coortes , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/virologia , Alvéolos Pulmonares/diagnóstico por imagem , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Resultado do Tratamento
11.
Crit Care ; 25(1): 214, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154635

RESUMO

BACKGROUND: Critically ill COVID-19 patients have pathophysiological lung features characterized by perfusion abnormalities. However, to date no study has evaluated whether the changes in the distribution of pulmonary gas and blood volume are associated with the severity of gas-exchange impairment and the type of respiratory support (non-invasive versus invasive) in patients with severe COVID-19 pneumonia. METHODS: This was a single-center, retrospective cohort study conducted in a tertiary care hospital in Northern Italy during the first pandemic wave. Pulmonary gas and blood distribution was assessed using a technique for quantitative analysis of dual-energy computed tomography. Lung aeration loss (reflected by percentage of normally aerated lung tissue) and the extent of gas:blood volume mismatch (percentage of non-aerated, perfused lung tissue-shunt; aerated, non-perfused dead space; and non-aerated/non-perfused regions) were evaluated in critically ill COVID-19 patients with different clinical severity as reflected by the need for non-invasive or invasive respiratory support. RESULTS: Thirty-five patients admitted to the intensive care unit between February 29th and May 30th, 2020 were included. Patients requiring invasive versus non-invasive mechanical ventilation had both a lower percentage of normally aerated lung tissue (median [interquartile range] 33% [24-49%] vs. 63% [44-68%], p < 0.001); and a larger extent of gas:blood volume mismatch (43% [30-49%] vs. 25% [14-28%], p = 0.001), due to higher shunt (23% [15-32%] vs. 5% [2-16%], p = 0.001) and non-aerated/non perfused regions (5% [3-10%] vs. 1% [0-2%], p = 0.001). The PaO2/FiO2 ratio correlated positively with normally aerated tissue (ρ = 0.730, p < 0.001) and negatively with the extent of gas-blood volume mismatch (ρ = - 0.633, p < 0.001). CONCLUSIONS: In critically ill patients with severe COVID-19 pneumonia, the need for invasive mechanical ventilation and oxygenation impairment were associated with loss of aeration and the extent of gas:blood volume mismatch.


Assuntos
Volume Sanguíneo/fisiologia , COVID-19/diagnóstico por imagem , COVID-19/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Troca Gasosa Pulmonar/fisiologia , Idoso , Gasometria/métodos , COVID-19/epidemiologia , Estudos de Coortes , Estado Terminal/epidemiologia , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Respiração Artificial/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
12.
Crit Care Med ; 48(1): e66-e73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634232

RESUMO

OBJECTIVES: The theoretical basis for minimizing tidal volume during high-frequency oscillatory ventilation may not be appropriate when lung tissue stretch occurs heterogeneously and/or rapidly. The objective of this study was to assess the extent to which increased ventilation heterogeneity may contribute to ventilator-induced lung injury during high-frequency oscillatory ventilation in adults compared with neonates on the basis of lung size, using a computational model of human lungs. DESIGN: Computational modeling study. SETTING: Research laboratory. SUBJECTS: High-fidelity, 3D computational models of human lungs, scaled to various sizes representative of neonates, children, and adults, with varying injury severity. All models were generated from one thoracic CT image of a healthy adult male. INTERVENTIONS: Oscillatory ventilation was simulated in each lung model at frequencies ranging from 0.2 to 40 Hz. Sinusoidal flow oscillations were delivered at the airway opening of each model and distributed through the lungs according to regional parenchymal mechanics. MEASUREMENTS AND MAIN RESULTS: Acinar flow heterogeneity was assessed by the coefficient of variation in flow magnitudes across all acini in each model. High-frequency oscillatory ventilation simulations demonstrated increasing heterogeneity of regional parenchymal flow with increasing lung size, with decreasing ratio of deadspace to total acinar volume, and with increasing frequency above lung corner frequency and resonant frequency. Potential for resonant amplification was greatest in injured adult-sized lungs with higher regional quality factors indicating the presence of underdamped lung regions. CONCLUSIONS: The potential for ventilator-induced lung injury during high-frequency oscillatory ventilation is enhanced at frequencies above lung corner frequency or resonant frequency despite reduced tidal volumes, especially in adults, due to regional amplification of heterogeneous flow. Measurements of corner frequency and resonant frequency should be considered during high-frequency oscillatory ventilation management.


Assuntos
Ventilação de Alta Frequência/efeitos adversos , Pulmão/anatomia & histologia , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Adulto , Criança , Simulação por Computador , Humanos , Recém-Nascido , Tamanho do Órgão
13.
Anesthesiology ; 131(3): 716-749, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30664057

RESUMO

Acute respiratory distress syndrome (ARDS) consists of acute hypoxemic respiratory failure characterized by massive and heterogeneously distributed loss of lung aeration caused by diffuse inflammation and edema present in interstitial and alveolar spaces. It is defined by consensus criteria, which include diffuse infiltrates on chest imaging-either plain radiography or computed tomography. This review will summarize how imaging sciences can inform modern respiratory management of ARDS and continue to increase the understanding of the acutely injured lung. This review also describes newer imaging methodologies that are likely to inform future clinical decision-making and potentially improve outcome. For each imaging modality, this review systematically describes the underlying principles, technology involved, measurements obtained, insights gained by the technique, emerging approaches, limitations, and future developments. Finally, integrated approaches are considered whereby multimodal imaging may impact management of ARDS.


Assuntos
Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia
14.
Anesth Analg ; 126(1): 143-149, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28632529

RESUMO

BACKGROUND: In the 2014 PROtective Ventilation using HIgh versus LOw positive end-expiratory pressure (PROVHILO) trial, intraoperative low tidal volume ventilation with high positive end-expiratory pressure (PEEP = 12 cm H2O) and lung recruitment maneuvers did not decrease postoperative pulmonary complications when compared to low PEEP (0-2 cm H2O) approach without recruitment breaths. However, effects of intraoperative PEEP on lung compliance remain poorly understood. We hypothesized that higher PEEP leads to a dominance of intratidal overdistension, whereas lower PEEP results in intratidal recruitment/derecruitment (R/D). To test our hypothesis, we used the volume-dependent elastance index %E2, a respiratory parameter that allows for noninvasive and radiation-free assessment of dominant overdistension and intratidal R/D. We compared the incidence of intratidal R/D, linear expansion, and overdistension by means of %E2 in a subset of the PROVHILO cohort. METHODS: In 36 patients from 2 participating centers of the PROVHILO trial, we calculated respiratory system elastance (E), resistance (R), and %E2, a surrogate parameter for intratidal overdistension (%E2 > 30%) and R/D (%E2 < 0%). To test the main hypothesis, we compared the incidence of intratidal overdistension (primary end point) and R/D in higher and lower PEEP groups, as measured by %E2. RESULTS: E was increased in the lower compared to higher PEEP group (18.6 [16…22] vs 13.4 [11.0…17.0] cm H2O·L; P < .01). %E2 was reduced in the lower PEEP group compared to higher PEEP (-15.4 [-28.0…6.5] vs 6.2 [-0.8…14.0] %; P < .05). Intratidal R/D was increased in the lower PEEP group (61% vs 22%; P = .037). The incidence of intratidal overdistension did not differ significantly between groups (6%). CONCLUSIONS: During mechanical ventilation with protective tidal volumes in patients undergoing open abdominal surgery, lung recruitment followed by PEEP of 12 cm H2O decreased the incidence of intratidal R/D and did not worsen overdistension, when compared to PEEP ≤2 cm H2O.


Assuntos
Abdome/cirurgia , Respiração com Pressão Positiva/métodos , Complicações Pós-Operatórias/fisiopatologia , Mecânica Respiratória/fisiologia , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/prevenção & controle , Estudos Prospectivos
15.
J Clin Monit Comput ; 31(6): 1263-1271, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27844299

RESUMO

Volatile anesthetics alter the physical properties of inhaled gases, such as density and viscosity. We hypothesized that the use of these agents during mechanical ventilation would yield systematic biases in estimates of flow ([Formula: see text]) and tidal volume (V T) for two commonly used flowmeters: the pneumotachograph (PNT), which measures a differential pressure across a calibrated resistive element, and the hot-wire anemometer (HWA), which operates based on convective heat transfer from a current-carrying wire to a flowing gas. We measured [Formula: see text] during ventilation of a spring-loaded mechanical test lung, using both the PNT and HWA placed in series at the airway opening. Delivered V T was estimated from the numerically-integrated [Formula: see text]. Measurements were acquired under baseline conditions with room air, and during ventilation with increasing concentrations of isoflurane, sevoflurane, and desflurane. We also evaluated a simple compensation technique for HWA flow, which accounted for changes in gas mixture density. We found that discrepancies in estimated V T between the PNT and HWA occurred during ventilation with isoflurane (6.3 ± 3.0%), sevoflurane (10.0 ± 7.3%), and desflurane (25.8 ± 17.2%) compared to baseline conditions. The magnitude of these discrepancies increased with anesthetic concentration. A simple compensation factor based on density reduced observed differences between the flowmeters, regardless of the anesthetic or concentration. These data indicate that the choice and concentration of anesthetic agents are primary factors for differences in estimated V T between the PNT and HWA. Such discrepancies may be compensated by accounting for alterations in gas density.


Assuntos
Anestesiologia/métodos , Anestésicos Inalatórios/administração & dosagem , Isoflurano/análogos & derivados , Éteres Metílicos/administração & dosagem , Respiração Artificial/métodos , Volume de Ventilação Pulmonar , Calibragem , Desflurano , Desenho de Equipamento , Hemodinâmica/efeitos dos fármacos , Humanos , Isoflurano/administração & dosagem , Pulmão , Monitorização Intraoperatória/métodos , Monitorização Fisiológica/métodos , Reprodutibilidade dos Testes , Sevoflurano , Temperatura
17.
Anesthesiology ; 123(6): 1394-403, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26495977

RESUMO

BACKGROUND: Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. The authors hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared with traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed "multifrequency oscillatory ventilation" (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. METHODS: Thirteen intubated preterm lambs were randomly assigned to either SFOV or MFOV for 1 h, followed by crossover to the alternative regimen for 1 h. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, whereas the customized MFOV waveform consisted of a 5-Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening ((Equation is included in full-text article.)) and inspired oxygen fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted at 15-min intervals. A ventilatory cost function for SFOV and MFOV was defined as (Equation is included in full-text article.), where Wt denotes body weight. RESULTS: Averaged over all time points, MFOV resulted in significantly lower VC (246.9 ± 6.0 vs. 363.5 ± 15.9 ml mmHg kg) and (Equation is included in full-text article.)(12.8 ± 0.3 vs. 14.1 ± 0.5 cm H2O) compared with SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. CONCLUSION: Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared with traditional single-frequency HFOV.


Assuntos
Ventilação de Alta Frequência/métodos , Pulmão/fisiopatologia , Respiração , Insuficiência Respiratória/prevenção & controle , Análise de Variância , Animais , Animais Recém-Nascidos , Gasometria/estatística & dados numéricos , Estudos Cross-Over , Impedância Elétrica , Mecânica Respiratória/fisiologia , Ovinos , Resultado do Tratamento
18.
Artigo em Inglês | MEDLINE | ID: mdl-26744597

RESUMO

Status asthmaticus (SA) is a severe, refractory form of asthma that can result in rapid respiratory deterioration and death. Treatment of SA with inhaled anesthetics is a potentially life-saving therapy, but remarkably few data are available about its mechanism of action or optimal administration. In this paper, we will review the clinical use of inhaled anesthetics for treatment of SA, the potential mechanisms by which they dilate constricted airways, and the side effects associated with their administration. We will also introduce the concept of 'targeted' delivery of these agents to the conducting airways, a process which may maximize their therapeutic effects while minimizing associated systemic side effects. Such a delivery regimen has the potential to define a rapidly translatable treatment paradigm for this life-threatening disorder.

19.
Respir Care ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408775

RESUMO

BACKGROUND: Lung volume measurements are important for monitoring functional aeration and recruitment, and may help guide adjustments in ventilator settings. The expiratory phase of APRV may provide physiologic information about lung volume based on the expiratory flow-time slope, angle, and time to approach a no-flow state (TExp). We hypothesized that expiratory flow rate would correlate with estimated lung volume (ELV), as measured using a modified nitrogen washout/washin technique in a large animal lung injury model. METHODS: Eight pigs (35.2±1.0kg) were mechanically ventilated using an Engström Carescape R860 on the APRV mode. All settings were held constant except the expiratory duration (TLow), which was adjusted based on the expiratory flow curve. Abdominal pressure was increased to 15mmHg in normal and Tween-injured lungs to replicate a combination of pulmonary and extrapulmonary lung injury. ELV was estimated using the Carescape FRC InView Tool. The expiratory flow-time slope and TExp were measured from the expiratory flow profile. RESULTS: Lung elastance increased with Tween-induced lung injury from 29.3±7.3cmH2O/L to 39.9±15.1cmH2O/L and chest wall elastance increased with increasing intra-abdominal pressures from 15.3±4.1cmH2O/L to 25.7±10.0cmH2O/L in the normal lung and 15.8±6.0cmH2O/L to 33.0±6.2cmH2O/L in the Tween-injured lung (p=0.39). ELV decreased from 1.90±0.83L in the Tween-Injured lung to 0.67±0.1L by increasing intra-abdominal pressures to 15mmHg. This had a significant correlation with a TExp decrease from 2.3±0.8s to 1.0±0.1s in the Tween-injured group with increasing insufflation pressures (ρ = 0.95) and with the expiratory flow-time slope, which increased from 0.29±0.06L/s2 to 0.63±0.05L/s2 (ρ = 0.78). CONCLUSIONS: Changes in ELV over time, and the TExp and flow-time slope, can be used to demonstrate evolving lung injury during APRV. Using the slope to infer changes in functional lung volume represents a unique, reproducible, real-time, bedside technique that does not interrupt ventilation and may be used for clinical interpretation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA