Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 41(2): 1191-210, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23209026

RESUMO

Eukaryotic ribosome biogenesis requires more than 150 auxiliary proteins, which transiently interact with pre-ribosomal particles. Previous studies suggest that several of these biogenesis factors function together as modules. Using a heterologous expression system, we show that the large ribosomal subunit (LSU) biogenesis factor Noc1p of Saccharomyces cerevisiae can simultaneously interact with the LSU biogenesis factor Noc2p and Rrp5p, a factor required for biogenesis of the large and the small ribosomal subunit. Proteome analysis of RNA polymerase-I-associated chromatin and chromatin immunopurification experiments indicated that all members of this protein module and a specific set of LSU biogenesis factors are co-transcriptionally recruited to nascent ribosomal RNA (rRNA) precursors in yeast cells. Further ex vivo analyses showed that all module members predominantly interact with early pre-LSU particles after the initial pre-rRNA processing events have occurred. In yeast strains depleted of Noc1p, Noc2p or Rrp5p, levels of the major LSU pre-rRNAs decreased and the respective other module members were associated with accumulating aberrant rRNA fragments. Therefore, we conclude that the module exhibits several binding interfaces with pre-ribosomes. Taken together, our results suggest a co- and post-transcriptional role of the yeast Rrp5p-Noc1p-Noc2p module in the structural organization of early LSU precursors protecting them from non-productive RNase activity.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transcrição Gênica
2.
Nucleic Acids Res ; 38(9): 3068-80, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20100801

RESUMO

Formation of eukaryotic ribosomes requires more than 150 biogenesis factors which transiently interact with the nascent ribosomal subunits. Previously, many pre-ribosomal intermediates could be distinguished by their protein composition and rRNA precursor (pre-rRNA) content. We purified complexes of ribosome biogenesis factors from yeast cells in which de novo synthesis of rRNA precursors was down-regulated by genetic means. We compared the protein composition of these largely pre-rRNA free assemblies with the one of analogous pre-ribosomal preparations by semi-quantitative mass spectrometry. The experimental setup minimizes the possibility that the analysed pre-rRNA free protein modules were derived from (partially) disrupted pre-ribosomal particles and provides thereby strong evidence for their pre-ribosome independent existence. In support of the validity of this approach (i) the predicted composition of the analysed protein modules was in agreement with previously described rRNA-free complexes and (ii) in most of the cases we could identify new candidate members of reported protein modules. An unexpected outcome of these analyses was that free large ribosomal subunits are associated with a specific set of ribosome biogenesis factors in cells where neo-production of nascent ribosomes was blocked. The data presented strengthen the idea that assembly of eukaryotic pre-ribosomal particles can result from transient association of distinct building blocks.


Assuntos
Proteínas Fúngicas/análise , Proteínas Ribossômicas/análise , Ribossomos/química , Proteínas Fúngicas/metabolismo , Precursores de RNA/metabolismo , RNA Fúngico/biossíntese , RNA Fúngico/metabolismo , RNA Ribossômico/biossíntese , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Leveduras/genética
3.
PLoS One ; 9(12): e114898, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25501974

RESUMO

Eukaryotic ribosome biogenesis is a multistep process involving more than 150 biogenesis factors, which interact transiently with pre-ribosomal particles to promote their maturation. Some of these auxiliary proteins have been isolated in complexes found separate from the ribosomal environment. Among them, are 3 large UTP subcomplexes containing 6 or 7 protein subunits which are involved in the early steps of ribosome biogenesis. The composition of the UTP subcomplexes and the network of binary interactions between protein subunits have been analyzed previously. To obtain further insights into the structural and biochemical properties of UTP subcomplexes, we established a heterologous expression system to allow reconstitution of the yeast tUTP/UTP A and UTP B subcomplexes from their candidate subunits. The results of a series of reconstitution experiments involving different combinations of protein subunits are in good agreement with most of the previously observed binary interactions. Moreover, in combination with additional biochemical analyses, several stable building blocks of the UTP subcomplexes were identified. Based on these findings, we present a refined model of the tUTP/UTP A and UTP B architecture.


Assuntos
Complexos Multiproteicos/metabolismo , Biogênese de Organelas , Ribonucleoproteínas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina Trifosfato/metabolismo , Leveduras/citologia , Animais , Western Blotting , Células Cultivadas , Técnicas In Vitro , Insetos , Complexos Multiproteicos/genética , Oligonucleotídeos , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas em Tandem , Uridina Trifosfato/genética , Leveduras/metabolismo
4.
PLoS One ; 8(7): e68412, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874617

RESUMO

During the assembly process of ribosomal subunits, their structural components, the ribosomal RNAs (rRNAs) and the ribosomal proteins (r-proteins) have to join together in a highly dynamic and defined manner to enable the efficient formation of functional ribosomes. In this work, the assembly of large ribosomal subunit (LSU) r-proteins from the eukaryote S. cerevisiae was systematically investigated. Groups of LSU r-proteins with specific assembly characteristics were detected by comparing the protein composition of affinity purified early, middle, late or mature LSU (precursor) particles by semi-quantitative mass spectrometry. The impact of yeast LSU r-proteins rpL25, rpL2, rpL43, and rpL21 on the composition of intermediate to late nuclear LSU precursors was analyzed in more detail. Effects of these proteins on the assembly states of other r-proteins and on the transient LSU precursor association of several ribosome biogenesis factors, including Nog2, Rsa4 and Nop53, are discussed.


Assuntos
Multimerização Proteica/fisiologia , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografia de Afinidade , Espectrometria de Massas , Proteoma/análise , Proteômica/métodos , Precursores de RNA/análise , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
PLoS One ; 7(3): e32552, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22431976

RESUMO

Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA). Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins) and ribosome precursors (pre-ribosomes) are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU) processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.


Assuntos
Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mutação/genética , Ligação Proteica , Precursores de RNA/metabolismo , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/isolamento & purificação , Subunidades Ribossômicas Menores , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
6.
PLoS One ; 7(8): e42449, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876323

RESUMO

Analyses of the conformational dynamics of the numerous cellular ribonucleoprotein particles (RNP) significantly contribute to the understanding of their modes of action. Here, we tested whether ribonuclease fusion proteins incorporated into RNPs can be used as molecular probes to characterize the local RNA environment of these proteins. Fusion proteins of micrococcal nuclease (MNase) with ribosomal proteins were expressed in S. cerevisae to produce in vivo recombinant ribosomes which have a ribonuclease tethered to specific sites. Activation of the MNase activity by addition of calcium led to specific rRNA cleavage events in proximity to the ribosomal binding sites of the fusion proteins. The dimensions of the RNP environment which could be probed by this approach varied with the size of the linker sequence between MNase and the fused protein. Advantages and disadvantages of the use of MNase fusion proteins for local tertiary structure probing of RNPs as well as alternative applications for this type of approach in RNP research are discussed.


Assuntos
Proteínas Recombinantes de Fusão/química , Ribonucleoproteínas/química , Nuclease do Micrococo/genética , Nuclease do Micrococo/metabolismo , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Clivagem do RNA , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
PLoS One ; 4(12): e8370, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20019888

RESUMO

Noc1p, Noc3p and Noc4p are eukaryotic proteins which play essential roles in yeast ribosome biogenesis and contain a homologous stretch of about 45 aminoacids (Noc-domain) of unknown function. Yeast Noc4p is a component of the small ribosomal subunit (SSU) processome, can be isolated as a stable Noc4p-Nop14p SSU-processome submodule from yeast cells, and is required for nuclear steps of small ribosomal subunit rRNA maturation. We expressed a series of mutated alleles of NOC4 in yeast cells and analysed whether the corresponding protein variants support vegetative growth, interact with Nop14p, and are incorporated into the SSU-processome. The data reveal that the essential C-terminus of Noc4p which contains 237 aminoacids including the Noc-domain represents a protein-protein interaction module. It is required and sufficient for its association with Nop14p and several nuclear precursors of the small ribosomal subunit. The N-terminal Noc4-part seems to be targeted to pre-ribosomes via the C-terminus of Noc4p and plays there an essential role in SSU-processome function. Replacement of the Noc4p-Noc-domain by its homologues Noc1p-counterpart results in a hybrid Noc4p variant which fails to associate with Nop14p and pre-ribosomes. On the other hand, exchange of 6 amino acids in the Noc1-Noc-domain of this hybrid Noc4p protein is sufficient to restore its essential in vivo functions. These data suggest that Noc-domains of Noc1p and Noc4p share a common structural backbone in which diverging amino acids play crucial roles in mediating specific regulated interactions. Our analysis allows us to distinguish between different functions of certain domains within Noc4p and contribute to the understanding of how incorporation of Noc4p into ribosomal precursors is coupled to rRNA processing and maturation of the small ribosomal subunit.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Deleção de Genes , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Precursores de RNA/metabolismo , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteínas Ribossômicas/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA