Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Protein Expr Purif ; 218: 106446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395209

RESUMO

The small GTPase Rat sarcoma virus proteins (RAS) are key regulators of cell growth and involved in 20-30% of cancers. RAS switches between its active state and inactive state via exchange of GTP (active) and GDP (inactive). Therefore, to study active protein, it needs to undergo nucleotide exchange to a non-hydrolysable GTP analog. Calf intestine alkaline phosphatase bound to agarose beads (CIP-agarose) is regularly used in a nucleotide exchange protocol to replace GDP with a non-hydrolysable analog. Due to pandemic supply problems and product shortages, we found the need for an alternative to this commercially available product. Here we describe how we generated a bacterial alkaline phosphatase (BAP) with an affinity tag bound to an agarose bead. This BAP completely exchanges the nucleotide in our samples, thereby demonstrating an alternative to the commercially available product using generally available laboratory equipment.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Sefarose , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
2.
Microb Cell Fact ; 23(1): 208, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049057

RESUMO

The diversity of chemical and structural attributes of proteins makes it inherently difficult to produce a wide range of proteins in a single recombinant protein production system. The nature of the target proteins themselves, along with cost, ease of use, and speed, are typically cited as major factors to consider in production. Despite a wide variety of alternative expression systems, most recombinant proteins for research and therapeutics are produced in a limited number of systems: Escherichia coli, yeast, insect cells, and the mammalian cell lines HEK293 and CHO. Recent interest in Vibrio natriegens as a new bacterial recombinant protein expression host is due in part to its short doubling time of ≤ 10 min but also stems from the promise of compatibility with techniques and genetic systems developed for E. coli. We successfully incorporated V. natriegens as an additional bacterial expression system for recombinant protein production and report improvements to published protocols as well as new protocols that expand the versatility of the system. While not all proteins benefit from production in V. natriegens, we successfully produced several proteins that were difficult or impossible to produce in E. coli. We also show that in some cases, the increased yield is due to higher levels of properly folded protein. Additionally, we were able to adapt our enhanced isotope incorporation methods for use with V. natriegens. Taken together, these observations and improvements allowed production of proteins for structural biology, biochemistry, assay development, and structure-based drug design in V. natriegens that were impossible and/or unaffordable to produce in E. coli.


Assuntos
Proteínas Recombinantes , Vibrio , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Vibrio/genética , Vibrio/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Humanos
3.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-39139585

RESUMO

The E.3.3 mutation was generated in a Flp/FRT EMS screen for conditional mutations that cause growth and developmental defects in a genetic background that blocks apoptosis. The mutations were conditional, based on the Dark 82 allele being present on the starting chromosome, and blocking canonical apoptosis in a homozygous state. The E.3.3 mosaic eyes exhibit defects in eye development including patches of rough eye and irregular surface structure. Whole Genome Sequencing and complementation mapping revealed E.3.3 as an allele of prod . Prod is a DNA-binding protein that binds satellite repeats and is involved in chromocenter formation during mitosis. Here we present a novel allele of prod , prod E.3.3 , that disrupts the functional region of the Prod protein resulting in disruption of typical eye structure, likely due to disruption of chromatid separation during development.

4.
Case Rep Crit Care ; 2019: 1406840, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019812

RESUMO

Chylous effusions are a well-known complication from a variety of etiologies including trauma, malignancies, and anatomic defects, with the most common location being in the pleural space. A pericardial chylous effusion (chylopericardium) is uncommon, and a chylopericardium with concomitant bilateral chylous pleural effusions (chylothoraces) has only been reported in less than a handful of case reports. Our patient presented with bilateral chylothoraces and a chylopericardium with tamponade physiology secondary to Hodgkin's Lymphoma. In this article, we discuss our treatment of this patient with the somatostatin analogue octreotide, as well as the standard of care dietary fat restriction, in order to control these effusions until the patient's chemotherapy took effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA