Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 242024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38140959

RESUMO

Pulcherrimin is an iron (III) chelate of pulcherriminic acid that plays a role in antagonistic microbial interactions, iron metabolism, and stress responses. Some bacteria and yeasts produce pulcherriminic acid, but so far, pulcherrimin could not be produced in Saccharomyces cerevisiae. Here, multiple integrations of the Metschnikowia pulcherrima PUL1 and PUL2 genes in the S. cerevisiae genome resulted in red colonies, which indicated pulcherrimin formation. The coloration correlated positively and significantly with the number of PUL1 and PUL2 genes. The presence of pulcherriminic acid was confirmed by mass spectrometry. In vitro competition assays with the plant pathogenic fungus Botrytis caroliana revealed inhibitory activity on conidiation by an engineered, strong pulcherrimin-producing S. cerevisiae strain. We demonstrate that the PUL1 and PUL2 genes from M. pulcherrima, in multiple copies, are sufficient to transfer pulcherrimin production to S. cerevisiae and represent the starting point for engineering and optimizing this biosynthetic pathway in the future.


Assuntos
Metschnikowia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Botrytis/genética , Botrytis/metabolismo , Metschnikowia/genética , Metschnikowia/metabolismo , Ferro/metabolismo
2.
BMC Microbiol ; 17(1): 4, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056814

RESUMO

BACKGROUND: While recent advances in next generation sequencing technologies have enabled researchers to readily identify countless microbial species in soil, rhizosphere, and phyllosphere microbiomes, the biological functions of the majority of these species are unknown. Functional studies are therefore urgently needed in order to characterize the plethora of microorganisms that are being identified and to point out species that may be used for biotechnology or plant protection. Here, we used a dual culture assay and growth analyses to characterise yeasts (40 different isolates) and their antagonistic effect on 16 filamentous fungi; comprising plant pathogens, antagonists, and saprophytes. RESULTS: Overall, this competition screen of 640 pairwise combinations revealed a broad range of outcomes, ranging from small stimulatory effects of some yeasts up to a growth inhibition of more than 80% by individual species. On average, yeasts isolated from soil suppressed filamentous fungi more strongly than phyllosphere yeasts and the antagonistic activity was a species-/isolate-specific property and not dependent on the filamentous fungus a yeast was interacting with. The isolates with the strongest antagonistic activity were Metschnikowia pulcherrima, Hanseniaspora sp., Cyberlindnera sargentensis, Aureobasidium pullulans, Candida subhashii, and Pichia kluyveri. Among these, the soil yeasts (C. sargentensis, A. pullulans, C. subhashii) assimilated and/or oxidized more di-, tri- and tetrasaccharides and organic acids than yeasts from the phyllosphere. Only the two yeasts C. subhashii and M. pulcherrima were able to grow with N-acetyl-glucosamine as carbon source. CONCLUSIONS: The competition assays and physiological experiments described here identified known antagonists that have been implicated in the biological control of plant pathogenic fungi in the past, but also little characterised species such as C. subhashii. Overall, soil yeasts were more antagonistic and metabolically versatile than yeasts from the phyllosphere. Noteworthy was the strong antagonistic activity of the soil yeast C. subhashii, which had so far only been described from a clinical sample and not been studied with respect to biocontrol. Based on binary competition assays and growth analyses (e.g., on different carbon sources, growth in root exudates), C. subhashii was identified as a competitive and antagonistic soil yeast with potential as a novel biocontrol agent against plant pathogenic fungi.


Assuntos
Antibiose , Agentes de Controle Biológico , Candida/isolamento & purificação , Candida/fisiologia , Fungos/crescimento & desenvolvimento , Microbiologia do Solo , Candida/classificação , Candida/metabolismo , DNA Fúngico , Fungos/patogenicidade , Genoma Fúngico , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Malus/microbiologia , Raízes de Plantas/microbiologia , Plantas/microbiologia , Rizosfera , Solo
3.
Plant Dis ; 99(3): 370-375, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30699702

RESUMO

A set of differential hosts has recently been identified for 17 apple scab resistance genes in an updated system for defining gene-for-gene (GfG) relationships in the Venturia inaequalis-Malus pathosystem. However, a set of reference isolates characterized for their complementary avirulence alleles is not yet available. In this paper, we report on improving the set of differential hosts for h(7) and propose the apple genotype LPG3-29 as carrying the single major resistance gene Rvi7. We characterized a reference set of 23 V. inaequalis isolates on 14 differential apple hosts carrying major resistance genes under controlled conditions. We identified isolates that were virulent on at least one of the following defined resistance gene hosts: h(1), h(2), h(3), h(4), h(5), h(6), h(7), h(8), h(9), h(10), and h(13). Sixteen different virulence patterns were observed. In general, the isolates carried one to three virulences, but some of them were more complex, with up to six virulences. This set of well-characterized isolates will be helpful for the identification of additional apple scab resistance genes in apple germplasm and the characterization of new GfG relationships to help improve our understanding of the host-pathogen interactions in the V. inaequalis-Malus pathosystem.

4.
Microbiol Spectr ; : e0529922, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943135

RESUMO

Fungicide applications in agriculture and medicine can promote the evolution of resistant, pathogenic fungi, which is a growing problem for disease management in both settings. Nonpathogenic mycobiota are also exposed to fungicides, may become tolerant, and could turn into agricultural or medical problems, for example, due to climate change or in immunocompromised individuals. However, quantitative data about fungicide sensitivity of environmental fungi is mostly lacking. Aureobasidium species are widely distributed and frequently isolated yeast-like fungi. One species, A. pullulans, is used as a biocontrol agent, but is also encountered in clinical samples, regularly. Here, we compared 16 clinical and 30 agricultural Aureobasidium isolates based on whole-genome data and by sensitivity testing with the 3 fungicides captan, cyprodinil, and difenoconazole. Our phylogenetic analyses determined that 7 of the 16 clinical isolates did not belong to the species A. pullulans. These isolates clustered with other Aureobasidium species, including A. melanogenum, a recently separated species that expresses virulence traits that are mostly lacking in A. pullulans. Interestingly, the clinical Aureobasidium isolates were significantly more fungicide sensitive than many isolates from agricultural samples, which implies selection for fungicide tolerance of non-target fungi in agricultural ecosystems. IMPORTANCE Environmental microbiota are regularly found in clinical samples and can cause disease, in particular, in immunocompromised individuals. Organisms of the genus Aureobasidium belonging to this group are highly abundant, and some species are even described as pathogens. Many A. pullulans isolates from agricultural samples are tolerant to different fungicides, and it seems inevitable that such strains will eventually appear in the clinics. Selection for fungicide tolerance would be particularly worrisome for species A. melanogenum, which is also found in the environment and exhibits virulence traits. Based on our observation and the strains tested here, clinical Aureobasidium isolates are still fungicide sensitive. We, therefore, suggest monitoring fungicide sensitivity in species, such as A. pullulans and A. melanogenum, and to consider the development of fungicide tolerance in the evaluation process of fungicides.

5.
Bio Protoc ; 10(3): e3518, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654743

RESUMO

Yeasts such as Aureobasidium pullulans are unicellular fungi that occur in all environments and play important roles in biotechnology, medicine, food and beverage production, research, and agriculture. In the latter, yeasts are explored as biocontrol agents for the control of plant pathogenic fungi (e.g., Botrytis cinerea, Fusarium sp.); mainly on flowers and fruits. Eventually, such yeasts must be evaluated under field conditions, but such trials require a lot of time and resources and are often difficult to control. Experimental systems of intermediate complexity, between in vitro Petri dish assays and field trials, are thus required. For pre- and post-harvest applications, competition assays on fruits are reproducible, economical and thus widely used. Here, we present a general protocol for competition assays with fruits that can be adapted depending on the biocontrol yeast, plant pathogen, type of assay or fruit to be studied.

6.
Antibiotics (Basel) ; 9(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942551

RESUMO

Many yeasts have demonstrated intrinsic insensitivity to certain antifungal agents. Unlike the fungicide resistance of medically relevant yeasts, which is highly undesirable, intrinsic insensitivity to fungicides in antagonistic yeasts intended for use as biocontrol agents may be of great value. Understanding how frequently tolerance exists in naturally occurring yeasts and their underlying molecular mechanisms is important for exploring the potential of biocontrol yeasts and fungicide combinations for plant protection. Here, yeasts were isolated from various environmental samples in the presence of different fungicides (or without fungicide as a control) and identified by sequencing the internal transcribed spacer (ITS) region or through matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Among 376 isolates, 47 taxa were identified, and Aureobasidium pullulans was the most frequently isolated yeast. The baseline sensitivity of this yeast was established for 30 isolates from different environmental samples in vitro to captan, cyprodinil, and difenoconazole. For these isolates, the baseline minimum inhibitory concentration (MIC50) values for all the fungicides were higher than the concentrations used for the control of plant pathogenic fungi. For some isolates, there was no growth inhibition at concentrations as high as 300 µg/mL for captan and 128 µg/mL for cyprodinil. This information provides insight into the presence of resistance among naturally occurring yeasts and allows the choice of strains for further mechanistic analyses and the assessment of A. pullulans for novel applications in combination with chemical agents and as part of integrated plant-protection strategies.

7.
Plant Dis ; 82(5): 496-500, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-30856978

RESUMO

The anilinopyrimidines constitute a new class of mainly protective, broad-spectrum fungicides with a high activity against Botryotinia fuckeliana, the causal agent of gray mold on a wide range of host plants. The present study was initiated to investigate the genetic basis of resistance to anilinopyrimidines in B. fuckeliana and to assess the frequency of resistant isolates in vineyards in Switzerland exposed to experimental applications of anilinopyrimidines. In mating experiments, two sensitive reference isolates were crossed with three anilinopyrimidine-resistant field isolates. The analysis of 72 sexual progeny from six apothecia demonstrated that resistance to the anilinopyrimidine fungicide cyprodinil segregated in a 1:1 ratio and is therefore monogenic. The same segregation ratio was found for resistance to the dicarboximide fungicide vinclozolin. Resistance to cyprodinil segregated independently from resistance to vinclozolin. From 1993 to 1995, isolates of B. fuckeliana were collected in Switzerland from five vineyards that differed in their anilinopyrimidine spray history. Of a total of 303 isolates tested in vitro, three anilinopyrimidine-resistant isolates were detected in two vineyards where the cumulative number of treatments was between two and nine. The results of the study are discussed with respect to the implementation of an antiresistance strategy in Switzerland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA