RESUMO
Combustion of fossil fuels is the most important source of polycyclic aromatic hydrocarbons (PAHs) in the environment. Cities are typical of many human activities which are dependent on fossil fuels (road and railway transport, heat generation, waste incineration and industry) on a small area, leading to high concentrations of PAHs in urban air, dust and soil. The aim of this study was to determine the possible influence of urban traffic on the accumulation of sixteen priority PAHs in soils (n = 132 at two soil depths of 0-10 cm and 10-20 cm) taken at intersections (n = 37) with different traffic volumes and road ages. Variable concentrations of the sum of PAHs (∑16PAH) ranging from 188 to 21,950 µg/kg with a mean and median of 3021 µg/kg and 1930 µg/kg were recorded, respectively. Concentrations of PAHs positively correlated with soil organic carbon content (TOC) (rSpearman = 0.518; p < 0.001). Statistically significant positive correlations between ∑16PAH concentrations and traffic volume/road age were found in this study (rSpearman = 0.689/0.619; p < 0.001), while ∑16PAH concentration decreased with increasing distance from the road edge and was statistically lower at a soil depth of 10-20 cm than at 0-10 cm (p < 0.05). Multivariate statistical methods (principal component analysis and cluster analysis) applied to log-ratio transformed data (clr) to decrease the constant sum constraint coupled with positive matrix factorisation (PMF) modelling pointed to the dominance of pyrogenic emission sources, with 62.1% traffic-related (petrol and diesel emissions, liquid fuel and motor oil spills, and tyre wear) according to PMF results.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Carbono/análise , China , Poeira/análise , Monitoramento Ambiental/métodos , Combustíveis Fósseis/análise , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Eslováquia , Solo , Poluentes do Solo/análiseRESUMO
Today, it is proven that the contaminated urban soils are hazardous for the human health. Soil substrates of playgrounds call for special research as they are places where children are directly exposed to soil contaminants. Therefore, the objective of this work was to measure the pseudo-total contents and bioaccessibility of several metals and metalloids (As, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Sn, V, Zn) in two grain sizes (< 150 µm and < 50 µm) of playground soils in Bratislava city (the capital of Slovakia). The content of metal(loid)s in the soils was controlled by a number of factors, with their increased contents (above 75% percentile or higher) at sites influenced by point sources of pollution (industry and agriculture) or at old sites located in the city centre. Cobalt, Cr, Fe, Mn, Ni and V had relatively uniform contents in soils compared to the other elements. As regression modelling with a categorical variable confirmed, the age of urban areas influenced the accumulation of As, Bi, Cd, Cu, Hg, Pb, Sb and Sn in playground soils. Exploratory statistical techniques with compositionally transformed data (principal component analysis, cluster analysis and construction of symmetric coordinates for correlation analysis) divided trace elements into the two main groupings, Co, Cr, Fe, Mn, Ni, V and Bi, Cd, Cu, Hg, Pb, Sb, Sn, Zn. Median concentrations of the elements in smaller soil grains (< 50 µm) were significantly higher than in coarser grains (< 150 µm). Cobalt, Cu, Mn, Pb, Sn and Zn had significantly higher bioaccessible proportions (% of the pseudo-total content) in < 50 µm soil size than in < 150 µm; however, the same order of bioaccessibility was achieved in both grain sizes. The highest bioaccessibility had Cd, Cu, Pb and Zn (~ 40% and more), followed by Co, As, Mn, Sb (18-27%), Hg, Ni, Sn (10-12%) and finally Cr, Fe and V (less than 4%). The hazard index and carcinogenic risk values were higher in < 50 µm than in < 150 µm and significantly decreased in the two soil sizes when the bioaccessibility results were included in the health hazard calculation.
Assuntos
Poluentes do Solo/análise , Oligoelementos/análise , Disponibilidade Biológica , Carcinógenos/análise , Criança , Cidades , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Humanos , Metaloides/análise , Metaloides/farmacocinética , Metais/análise , Metais/farmacocinética , Parques Recreativos , Tamanho da Partícula , Eslováquia , Solo/química , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , Oligoelementos/farmacocinética , Oligoelementos/toxicidadeRESUMO
The aims of this study were to investigate the occurrence and distribution of total mercury (Hg) and other trace elements of environmental concern, such as arsenic (As), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and vanadium (V), in soils from the abandoned Merník cinnabar mine in eastern Slovakia. For this purpose, thirty soil samples from two depth intervals within the mine area (n = 60 soil samples) and additional sixteen soil samples from adjacent areas (n = 25 soil samples) were collected. Total Hg was measured by atomic absorption spectrometry, while As and other metals were analyzed using inductively coupled plasma atomic emission spectrometry. High mercury concentrations (> 100 mg/kg with a maximum of 951 mg/kg) were observed only in surface soils close to mine waste heaps and adits. Otherwise, Hg concentrations in the majority of surface soils were lower (0.14-19.7 mg/kg), however, higher than Hg in soils collected from sites outside the mine area (0.19-6.92 mg/kg) and even considerably higher than Hg in soils at sites not influenced by the Merník mine. Elevated Cr and Ni concentrations in soils regardless of their sampling sites (mean of 276 mg/kg and median of 132 mg/kg for Cr and 168 mg/kg and 81 mg/kg for Ni, respectively) were attributed to the lithology of the area; the soils are underlain by the sediments of the Central Carpathian Palaeogene, containing a detritus of ultrabasic rocks. As our geochemical data are compositional in nature, they were further treated by compositional data analysis (CoDA). Robust principal component analysis (RPCA) applied on centred (clr) log-ratio-transformed data and correlation analysis of compositional parts based on symmetric balances distinguished very well different sources of origin for the chemical elements. The following three element associations were identified: Hg association with the main source in mining/roasting, Cr-Ni association derived from bedrock and As-Cu-Mn-Pb-Zn-V association (natural background and minor sulphides/sulfosalts in mineralized rocks). The values of geoaccumulation index and enrichment factor suggested that concentrations of Hg in the soils were influenced by human industrial activities.
Assuntos
Cromo/análise , Mercúrio/análise , Níquel/análise , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Monitoramento Ambiental , Atividades Humanas , Humanos , Compostos de Mercúrio , Mineração , EslováquiaRESUMO
In this study, playground soils of kindergartens and green recreational zones in Bratislava were investigated for the occurrence and gastric bioaccessibility of arsenic (As) in the < 150 µm soil size fraction. Eighty topsoil (0-10 cm) samples were collected from playgrounds in kindergartens and green recreational zones throughout the urban area. Bioaccessibility measurements of As were performed using the Simple Bioaccessibility Extraction Test that mimics the human gastric environment, and resulting extracts were analyzed by hydride generation-atomic absorption spectrometry to assess bioaccessible As concentrations in the collected playground soils. Single selective chemical extractions using hydroxylamine hydrochloride-hydrochloric acid and dithionite-citrate-bicarbonate solutions also were used to determine the amount of As associated with amorphous and amorphous/crystalline Fe oxy-hydroxides in soils, respectively. The results showed that the spatial distribution of total As concentrations was related to the historical development of the city, with higher soil concentrations of As found in the old city centre and related urban zones and the lower ones on the outskirts of Bratislava. There was a variation in the values of bioaccessible concentrations and fractions of As, with ranges from 0.40 to 5.60 mg/kg and 7.29 to 56.1%, respectively. Correlation and multivariable linear regression analyses revealed that bioaccessible concentrations of As were linearly related to its total concentrations in the soils, whereas dithionite-citrate-bicarbonate extractable Fe (FeDCB) was the main soil property, controlling the bioaccessibility of As. When the amount of FeDCB in the soils increased, As bioaccessibility decreased, confirming an importance of Fe bound to amorphous and crystalline iron oxy-hydroxides to the limitation of As bioaccessibility in urban playground soils of Bratislava. Additionally, single selective extractions showed that As concentrations extracted by hydroxylamine hydrochloride (AsHH) and dithionite-citrate-bicarbonate (AsDCB) were positively correlated with its bioaccessible concentrations (Spearman r = 0.75 and 0.62, respectively; p < 0.001).
Assuntos
Arsênio/análise , Monitoramento Ambiental/métodos , Trato Gastrointestinal/metabolismo , Recreação , Poluentes do Solo/análise , Solo/química , Arsênio/farmacocinética , Disponibilidade Biológica , Cidades , Humanos , Jogos e Brinquedos , Eslováquia , Poluentes do Solo/farmacocinéticaRESUMO
A total of eighty surface soil samples were collected from public kindergartens and urban parks in the city of Bratislava, and the <150µm soil fraction was evaluated for total concentrations of five metals, Cd, Cu, Hg, Pb and Zn, their oral bioaccessibilities, non-carcinogenic and carcinogenic health risks to children, and lead isotopic composition. The mean metal concentrations in urban soils (0.29, 36.1, 0.13, 30.9 and 113mg/kg for Cd, Cu, Hg, Pb and Zn, respectively) were about two times higher compared with background soil concentrations. The order of bioaccessible metal fractions determined by Simple Bioaccessibility Extraction Test was: Pb (59.9%) > Cu (43.8%) > Cd (40.8%) > Zn (33.6%) > Hg (12.8%). Variations in the bioaccessible metal fractions were mainly related to the total metal concentrations in urban soils. A relatively wide range of lead isotopic ratios in urban soils (1.1598-1.2088 for 206Pb/207Pb isotopic ratio) indicated a combination of anthropogenic and geogenic sources of metals in the soils. Lower values of 206Pb/207Pb isotopic ratio in the city centre and similar spatial distribution of total metal concentrations, together with their increasing total concentrations in soils towards the city centre, showed that traffic and coal combustion in former times were likely the major sources of soil contamination. The non-carcinogenic and carcinogenic health risks to children due to exposure to metals in kindergarten and urban park soils were low, with hazard index and cancer risk values below the threshold values at all studied sites.
Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Modelos Biológicos , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Disponibilidade Biológica , Criança , Cidades , Digestão , Humanos , Metais Pesados/farmacocinética , Medição de Risco , Eslováquia , Poluentes do Solo/farmacocinética , Oligoelementos/farmacocinéticaRESUMO
Contents of potentially toxic elements Fe, Mn, Cr, Ni, Co, V, Cu, and Mo were determined in common dandelion (Taraxacum officinale) and agrimony (Agrimonia eupatoria) to show their usefulness as bioindicators of geogenic soil pollution. Both plants were collected on geochemically anomalous soils developed on flysch sedimentary rocks (Paleogene) of Eastern Slovakia, which also are composed of weathered detritus of some ultramafic rocks. Generally, contents of the investigated association of potentially toxic elements are highly increased in these "serpentine"-like soils. Elevated concentrations were detected in both shoots and roots of the plants. The highest values, which exceed world average values for plants, were observed for Ni content. They ranged from 1.7 to 16.3 mg kg(-1) in dandelion and from 1.6 to 22.6 mg kg(-1) in agrimony. Essential elements, such as Mo, Cu, and Mn, were the most concentrated in plants, whereas Co, V, and Cr were the least concentrated. Although the bioindication value of the common dandelion for anthropogenic soil pollution is well known, it is not mentioned for agrimony in literature, and no data exist to indicate the geogenic pollution for both plants. Dandelion and agrimony are widely used as herbal drugs; therefore, our intention also was to point out another fact, namely, possible high uptake of potentially toxic elements by herbal plants growing on similar soils.
Assuntos
Agrimonia/química , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Taraxacum/química , Eslováquia , Solo/químicaRESUMO
Landfills, especially those poorly managed, can negatively affect the environment and human beings through chemical contamination of soils and waters. This study investigates the soils of a historical municipal solid waste (MSW) landfill situated in the heart of a residential zone in the capital of Slovakia, Bratislava, with an emphasis on metal (loid) contamination and its consequences. Regardless of the depth, many of the soils exhibited high metal (loid) concentrations, mainly Cd, Cu, Pb, Sb, Sn and Zn (up to 24, 2620, 2420, 134, 811 and 6220 mg/kg, respectively), classifying them as extremely contaminated based on the geo-accumulation index (Igeo >5). The stable lead isotopic ratios of the landfill topsoil varied widely (1.1679-1.2074 for 206Pb/207Pb and 2.0573-2.1111 for 208Pb/206Pb) and indicated that Pb contained a natural component and an anthropogenic component, likely municipal solid waste incineration (MSWI) ash and construction waste. Oral bioaccessibility of metal (loid)s in the topsoil was variable with Cd (73.2-106%) and Fe (0.98-2.10%) being the most and least bioaccessible, respectively. The variation of metal (loid) bioaccessibility among the soils could be explained by differences in their geochemical fractionation as shown by positive correlations of bioaccessibility values with the first two fractions of BCR (Community Bureau of Reference) sequential extraction for As, Cd, Mn, Ni, Pb, Sn and Zn. The results of geochemical fractionation coupled with the mineralogical characterisation of topsoil showed that the reservoir of bioaccessible metal (loid)s was calcite and Fe (hydr)oxides. Based on aqua regia metal (loid) concentrations, a non-carcinogenic risk was demonstrated for children (HI = 1.59) but no risk taking into account their bioaccessible concentrations (HI = 0.65). This study emphasises the need for detailed research of the geochemistry of wastes deposited in urban soils to assess the potentially hazardous sources and determine the actual bioaccessibility and human health risks of the accumulated metal (loid)s.
Assuntos
Monitoramento Ambiental , Poluentes do Solo , Solo , Resíduos Sólidos , Instalações de Eliminação de Resíduos , Poluentes do Solo/análise , Humanos , Monitoramento Ambiental/métodos , Resíduos Sólidos/análise , Solo/química , Eslováquia , Medição de Risco , Metais Pesados/análise , Metais/análise , Eliminação de ResíduosRESUMO
Biochar addition to agricultural soils might increase the sorption of herbicides, and therefore, affect other sorption-related processes such as leaching, dissipation and toxicity for plants. In this study, the impact of wheat straw biochar on the sorption, leaching and dissipation in a soil, and toxicity for sunflower of (4-chloro-2-methylphenoxy)acetic acid (MCPA), a commonly used ionizable herbicide, was investigated. The results showed that MCPA sorption by biochar and biochar-amended soil (1.0wt% biochar) was 82 and 2.53 times higher than that by the non-amended soil, respectively. However, desorption of MCPA from biochar-amended soil was only 1.17 times lower than its desorption in non-amended soil. Biochar addition to soil reduced both MCPA leaching and dissipation. About 35% of the applied MCPA was transported through biochar-amended soil, while up to 56% was recovered in the leachates transported through non-amended soil. The half-life value of MCPA increased from 5.2d in non-amended soil to 21.5 d in biochar-amended soil. Pot experiments with sunflower (Helianthus annuus L.) grown in MCPA-free, but biochar-amended soil showed no positive effect of biochar on the growth of sunflower in comparison to the non-amended soil. However, biochar itself significantly reduced the content of photosynthetic pigments (chlorophyll a, b) in sunflower. There was no significant difference in the phytotoxic effects of MCPA on sunflowers between the biochar-amended soil and the non-amended soil. Furthermore, MCPA had no effect on the photosynthetic pigment contents in sunflower.
Assuntos
Ácido 2-Metil-4-clorofenoxiacético/análise , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Helianthus/crescimento & desenvolvimento , Herbicidas/análise , Poluentes do Solo/análise , Solo/química , Ácido 2-Metil-4-clorofenoxiacético/química , Agricultura , Clorofila/metabolismo , Meia-Vida , Helianthus/metabolismo , Herbicidas/química , Poluentes do Solo/química , TriticumRESUMO
Municipal solid waste incineration (MSWI) is an effective method for reducing the volume/mass of waste. However, MSWI ashes contain high concentrations of many substances, including trace metal (loid)s, that could be released into the environment and contaminate soils and groundwater. In this study, attention was focused on the site near the municipal solid waste incinerator where MSWI ashes are deposited on the surface without any control. Here, combined results (chemical and mineralogical analyses, leaching tests, speciation modelling, groundwater chemistry and human health risk assessment) are presented to assess the impact of MSWI ash on the surrounding environment. The mineralogy of â¼forty years old MSWI ash was diverse, and quartz, calcite, mullite, apatite, hematite, goethite, amorphous glasses and several Cu-bearing minerals (e.g. malachite, brochantite) were commonly detected. In general, the total concentrations of metal (loid)s in MSWI ashes were high, following the order: Zn (6731 mg/kg) > Ba (1969 mg/kg) ≈ Mn (1824 mg/kg) > Cu (1697 mg/kg) > Pb (1453 mg/kg) > Cr (247 mg/kg) > Ni (132 mg/kg) > Sb (59.4 mg/kg) > As (22.9 mg/kg) ≈ Cd (20.6 mg/kg). Cadmium, Cr, Cu, Pb, Sb and Zn exceeded the indication or even intervention criteria for industrial soils defined by the Slovak legislation. Batch leaching experiments with diluted citric and oxalic acids that simulate the leaching of chemical elements under rhizosphere conditions documented low dissolved fractions of metals (0.00-2.48%) in MSWI ash samples, showing their high geochemical stability. Non-carcinogenic and carcinogenic risks were below the threshold values of 1.0 and 1 × 10-6, respectively, with soil ingestion being the most important exposure route for workers. The groundwater chemistry was unaffected by deposited MSWI ashes. This study may be useful in determining the environmental risks of trace metal (loid)s in weathered MSWI ashes that are loosely deposited on the soil surface.
RESUMO
Community gardens are "green oases" of recent cities with many benefits for human society. From a human health perspective, these benefits can be damaged by chemical contamination of soil and cultivated vegetables. Using geochemical approaches, this study characterised (i) total metal(loid) concentrations in soils and two commonly grown vegetables in urban community gardens (Bratislava, Slovakia), (ii) gastrointestinal bioaccessibility using a modified physiologically based extraction test (PBET), and (iii) stable lead (Pb) isotopes in order to identify sources of metal(loid)s, solubilisation in the human body and migration of Pb from soil to vegetables. While some soils could be considered contaminated when compared to the Slovak legislation for agricultural soil, the bioaccessibility of metal(loid)s did not exceed 20% in the intestinal phase, with the exception of cadmium (Cd). Tomatoes and lettuce contained low total and bioaccessible concentrations of metal(loid)s, being safe for people who consume their own grown vegetables. There were differences in Pb isotope composition among bulk soils, vegetables and bioaccessible Pb, with less radiogenic Pb being preferentially mobilised. Statistical methods considering the compositional nature of the geochemical data and the enrichment factor (EF) distinguished well metal(loid)s of natural origin (As, Co, Cr, Fe, Mn, Ni, V) from those with anthropogenic contributions. This research has shown the usefulness of integrating different methodologies to better understand the geochemistry of metal(loid)s in urban soils with their highly diversified sources.
Assuntos
Metais Pesados , Poluentes do Solo , Monitoramento Ambiental/métodos , Jardins , Humanos , Isótopos , Chumbo , Metais Pesados/análise , Medição de Risco/métodos , Solo/química , Poluentes do Solo/análise , VerdurasRESUMO
Dredging water reservoirs is necessary to maintain accumulation capacity and to prevent floodings. As a first step, the quality of the bed sediments in water reservoirs must be determined before dredging operations. In this study, sediment samples from 34 stations of three selected water reservoirs (Zemplinska Sirava, Velke Kozmalovce, and Ruzin) were collected to investigate concentrations, distributions, and hazards of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and to predict their possible sources. Total PCB concentrations were in the range of 20.4 to 2,325 ng/g. The maximum concentrations of PCBs were found in sediments from Zemplinska Sirava, which is in the vicinity of a former manufacturer of PCBs. The composition of PCBs was characterized by tri- and hexa-CB congeners, indicating the influence of contamination from the use of specific Delor mixtures, formerly produced and massively used on the territory of Slovakia. The data showed that the highest total PAH concentrations were associated with the sediments from the Velke Kozmalovce, ranging from 7,910 to 29,538 ng/g. On the other hand, the lowest total PAH concentrations (84-631 ng/g of dry weight) were found in the sediments of Zemplinska Sirava, an important recreational area in eastern Slovakia. The distribution of individual PAHs was similar among the three water reservoirs, and this, together with principal component analysis and diagnostic PAH ratios, suggests mainly pyrolytic contamination of the sediments. However, petrogenic inputs appear to be important in the Zemplinska Sirava sediments.
Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Bifenilos Policlorados/química , Hidrocarbonetos Policíclicos Aromáticos/química , Eslováquia , Poluentes Químicos da Água/químicaRESUMO
In this study, the concentrations of arsenic were determined in the soils around old coal-ash pond. The soils in the study area were severely contaminated with arsenic after dam failure of the coal-ash pond. The mean concentrations of arsenic in soils collected from three sampling depths of 0-20, 20-40 and >40 cm were 173, 155 and 426 µg/g, respectively, exceeding greatly the Dutch intervention threshold for this element. Arsenic concentrations were positively correlated with total iron and aluminium contents in the soils (r = 0.73, p < 0.001 and r = 0.72, p < 0.001, respectively), indicating that oxyhydroxides of iron and aluminium may control the distribution of arsenic in these soils. Ammonium nitrate extractant was used to mimic availability of arsenic for plant uptake from the soils. Between 0.05 and 6.21% of the total soil arsenic were extracted using a single extraction test and a significant positive correlation between soil leachate pH and arsenic extractability (r = 0.70, p < 0.01) was observed. This suggested that soil pH might play a role in the bioavailability of arsenic.
Assuntos
Arsênio/análise , Vazamento de Resíduos Químicos , Carvão Mineral/análise , Poluentes do Solo/análise , Solo/química , Alumínio/análise , Carbono/análise , Cinza de Carvão , Concentração de Íons de Hidrogênio , Ferro/análise , Manganês/análise , Material Particulado/análise , EslováquiaRESUMO
Soils containing a large proportion of industrial waste can pose a health risk due to high environmentally available concentrations of toxic metal(loid)s. Nano zero-valent iron (nZVI) and amorphous manganese oxide (AMO) were applied as immobilising amendments (1 wt%) to soils with different industrial origin of As and Sb, and leaching of As, Sb, Pb, and Zn was investigated using a single extraction with deionised water. The different industrial impact was reflected in the mineralogy, chemical composition and pH of these soils. Water-soluble As ratios positively correlated with pH in all experimental treatments. A significant decrease of water-soluble As ratios was observed in all nZVI-amended soils (~65-93% of the control) except for one sample with the lowest solution pH. Nano zero-valent iron was also successful in Sb immobilisation (~76-90% of the control). Highly variable results were obtained for AMO, which only led to a decrease of water-soluble As in soils with solution pH of ≥7 (~70-80% of the control), probably due to lower stability of AMO in acidic conditions. In each case, nZVI was more efficient at decreasing water-soluble As ratios than AMO. Dissolved Pb concentrations remained unchanged after the application of nZVI and AMO, and the decrease of Zn leaching using AMO was controlled mainly by soil pH increase induced by its application. According to the calculated saturation indices, tripuhyite (FeSbO4) was predicted to be the key mineral controlling Sb solubility in mine soils. Secondary Fe (hydr)oxides either originally present or newly formed due to nZVI oxidation were instrumentally identified at different stages of their transformation and metal(loid) retention. To conclude, nZVI is suitable for application to contaminated soils at a wide pH range, while the use of AMO for decreasing As leaching is limited to soils with pH ≥ 7.
Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Concentração de Íons de Hidrogênio , Resíduos Industriais , Ferro , Chumbo , Manganês , Solo , Poluentes do Solo/análise , Zinco/análiseRESUMO
It is well known that road transport emits various trace elements into the environment, which are deposited in soils in the vicinity of roads, so-called roadside soils, and thus contributes to the deterioration of their chemical state. The aim of this work was to determine concentrations of some metals and metalloids (arsenic (As), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), vanadium (V), and zinc (Zn)) in soils from crossroads with traffic signals, which are characterized by deceleration of vehicles and increased emissions of elements related mainly to brake and tyre wear. The results confirmed a moderate enrichment of soils with Cu, Pb, and Zn (enrichment factor (EF) values > 2) and significant enrichment for Sb (EF > 5), while the other elements showed no or minimal enrichment. The age of crossroads proved to have a positive influence on the accumulation of some elements in soils with the largest differences for Cu, Fe, Pb, Sb, and Zn (p < 0.001). Traffic volumes expressed as the average daily traffic intensity (ADTI) also positively influenced soil concentrations of Cr, Cu, Pb, Sb, and Zn, while distance to the crossroad had a significant negative effect on the soil concentration of Cu, Sb, and Zn (p < 0.001). The stable isotopic ratios of Pb, 206Pb/207Pb and 208Pb/206Pb, ranging from 1.1414 to 1.2046 and from 2.0375 to 2.1246, respectively, pointed to the mixed natural-anthropic origin of Pb in the soils of crossroads with a visible contribution of traffic-related sources. Based on the above findings combined with covariance among the studied elements using statistical methods applied to compositionally transformed data, it was possible to show that Cu, Pb, Sb, and Zn clearly originated from road traffic.
Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Cidades , Monitoramento Ambiental , Metais Pesados/análise , Eslováquia , Solo , Poluentes do Solo/análise , Oligoelementos/análiseRESUMO
Ruzin and Velke Kozmalovce water reservoirs (Slovakia) receive potentially toxic elements through rivers draining catchment areas polluted with the former extensive mining of ore-bearing deposits. In this study, the concentrations and fractionation of metals (antimony, arsenic, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, vanadium and zinc) have been studied in the surface sediments of the two water reservoirs. Comparison of metal concentrations found in the sediments with the mean shale values revealed a significant anthropogenic enrichment mostly with antimony (22.7), copper (8.5), zinc (5.5), cadmium (4.7), mercury (4.7), arsenic (4.5) and lead (3.9), and antimony (9.8), cadmium (8.8), zinc (4.9), lead (3.3) and arsenic (3.1) in the Ruzin and Velke Kozmalovce reservoirs, respectively. The results of fractionation study showed that the major proportion of cadmium (44.9-52.6%), cobalt (35.7-58.3%) and zinc (27.8-48.7%) was found in labile fractions, i.e., water- and acid-soluble fractions, although copper and nickel exhibited also significant labile fractions. When the risk assessment code was applied to the fractionation study, cadmium and cobalt came under high and very high risk category for the environment, and therefore might cause adverse effect to aquatic life.
Assuntos
Sedimentos Geológicos/química , Metais/análise , Abastecimento de Água/análise , Monitoramento Ambiental , Metais Pesados , EslováquiaRESUMO
The US EPA health risk assessment method is currently widely used to assess human health risks for many environmental constituents. It is used for risk assessment from the exposure to various contaminants exceeding tolerable or safe reference doses, determined e.g., for drinking water, soil, air and food. It accepts widely that excess contents of non-essential elements (e.g., As, Pb or Sb) in environmental compartments represent a general risk to human health. However, contrary to toxic trace elements, deficient contents of essential (biogenic) elements e.g., F, I, Se, Zn, Fe, Ca or Mg may represent even higher health risk. Therefore, we propose to extend the human health risk assessment by calculating the health risk for deficient content and intake of essential elements, and to introduce the terms Average Daily Missing Dose (ADMD), Average Daily Required Dose (ADRD) and Average Daily Accepted Dose (ADAD). We propose the following equation to calculate the Hazard Quotient (HQ) of health risk from deficient elements: HQd = ADRD/ADAD. At present, there are no reference concentrations or doses of essential elements in each environmental compartment in world databases (Integrated Risk Information System IRIS, The Risk Assessment Information System RAIS). ADRD and ADMD can be derived from different regulatory standards or guidelines (if they exist) or calculated from actual regional data on the state of population health and content of essential elements in the environment, e.g., in groundwater or soil. This methodology was elaborated and tested on inhabitants of the Slovak Republic supplied with soft drinking water with an average Mg content of 5.66 mg·L-1. The calculated ADMD of Mg for these inhabitants is 0.314 mg·kg-1·day-1 and HQd is equal to 2.94, indicating medium risk of chronic diseases. This method extending traditional health risk assessment is the first attempt to quantify deficient content of essential elements in drinking water. It still has some limitations but also has potential to be further developed and refined through its testing in other countries.
Assuntos
Água Potável , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água/análise , Humanos , Medição de Risco , Eslováquia , Oligoelementos/análise , Poluentes Químicos da Água/toxicidadeRESUMO
BACKGROUND, AIM, AND SCOPE: Herbicide fate and its transport in soils and sediments greatly depend upon sorption-desorption processes. Quantitative determination of herbicide sorption-desorption is therefore essential for both the understanding of transport and the sorption equilibrium in the soil/sediment-water system; and it is also an important parameter for predicting herbicide fate using mathematical simulation models. The total soil/sediment organic carbon content and its qualitative characteristics are the most important factors affecting sorption-desorption of herbicides in soil or sediment. Since the acetochlor is one of the most frequently used herbicides in Slovakia to control annual grasses and certain annual broad-leaved weeds in maize and potatoes, and posses various negative health effects on human beings, our aim in this study was to investigate acetochlor sorption and desorption in various soil/sediment samples from Slovakia. The main soil/sediment characteristics governing acetochlor sorption-desorption were also identified. MATERIALS AND METHODS: The sorption-desorption of acetochlor, using the batch equilibration method, was studied on eight surface soils, one subsurface soil and five sediments collected from the Laborec River and three water reservoirs. Soils and sediments were characterized by commonly used methods for their total organic carbon content, distribution of humus components, pH, grain-size distribution, and smectite content, and for calcium carbonate content. The effect of soil/sediment characteristics on acetochlor sorption-desorption was examined by simple correlation analysis. RESULTS: Sorption of acetochlor was expressed as the distribution coefficient (K (d)). K (d) values slightly decreased as the initial acetochlor concentration increased. These values indicated that acetochlor was moderately sorbed by soils and sediments. Highly significant correlations between the K (d) values and the organic carbon content were observed at both initial concentrations. However, sorption of acetochlor was most closely correlated to the humic acid carbon, and less to the fulvic acid carbon. The total organic carbon content was found to also significantly influence acetochlor desorption. DISCUSSION: Since the strong linear relationship between the K (d) values of acetochlor and the organic carbon content was already released, the corresponding K (oc) values were calculated. Considerable variation in the K (oc) values suggested that other soil/sediment parameters besides the total soil organic carbon content could be involved in acetochlor sorption. This was revealed by a significant correlation between the K (oc) values and the ratio of humic acid carbon to fulvic acid carbon (C(HA)/C(FA)). CONCLUSIONS: When comparing acetochlor sorption in a range of soils and sediments, different K (d) values which are strongly correlated to the total organic carbon content were found. Concerning the humus fractions, the humic acid carbon content was strongly correlated to the K (d) values, and it is therefore a better predictor of the acetochlor sorption than the total organic carbon content. Variation in the K (oc) values was attributed to the differences in distribution of humus components between soils and sediments. Desorption of acetochlor was significantly influenced by total organic carbon content, with a greater organic carbon content reducing desorption. RECOMMENDATIONS AND PERSPECTIVES: This study examined the sorption-desorption processes of acetochlor in soils and sediments. The obtained sorption data are important for qualitative assessment of acetochlor mobility in natural solids, but further studies must be carried out to understand its environmental fate and transport more thoroughly. Although, the total organic carbon content, the humus fractions of the organic matter and the C(HA)/C(FA) ratio were sufficient predictors of the acetochlor sorption-desorption. Further investigations of the structural and chemical characteristics of humic substances derived from different origins are necessary to more preciously explain differences in acetochlor sorption in the soils and sediments observed in this study.
Assuntos
Sedimentos Geológicos/química , Herbicidas/química , Poluentes do Solo/química , Solo/análise , Toluidinas/química , Adsorção , Carbono/química , Monitoramento AmbientalRESUMO
Thirty-four sediment samples were collected in three water reservoirs from the Slovak Republic to investigate polycyclic aromatic hydrocarbon (PAH) distribution and predict their possible sources. The results showed that the highest total PAH concentrations were associated with sediments from the Velke Kozmalovce, ranging from 7,910 to 29,538 ng/g of dry weight. On the other hand, the lowest total PAH concentrations (84-631 ng/g of dry weight) were found in sediments of the Zemplinska Sirava, an important recreational area in eastern Slovakia. The distribution of individual PAHs was consistent within the three water reservoirs, and this together with diagnostic PAH ratios suggests mainly pyrolytic contamination of the sediments. However, petrogenic inputs appear to be important in the Zemplinska Sirava sediments.
Assuntos
Sedimentos Geológicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Carbono/análise , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental , Eslováquia , Espectrometria de FluorescênciaRESUMO
The protective role of hard drinking water against cardiovascular diseases is well documented by numerous studies. This article describes the impact of Ca and Mg contents in the drinking water with different water hardness on the cardiovascular system (arterial stiffness, arterial age) of residents of the Krupina district, the Slovak Republic. The research was based on the measurements of arterial stiffness, including the measurements of aortic pulse wave velocity (PWVao) and the calculation of the arterial age of the residents. In total, 144 randomly selected residents were included in measurements, divided into the two groups according to Ca and Mg contents in drinking water (water hardness). The first group was supplied with soft drinking water (total dissolved solids (TDS): 200-300 mg·L-1, Ca: 20-25 mg·L-1, Mg: 5-10 mg·L-1). The second group of residents was supplied with harder drinking water (TDS: 500-600 mg·L-1, Ca: 80-90 mg·L-1, Mg: 25-30 mg·L-1). Differences in arterial stiffness between the two groups of respondents were documented. Higher arterial stiffness (low flexibility of arteries) was determined for a group of residents supplied with soft drinking water. This was reflected in higher PWVao levels, higher number of pathological cases (PWVao > 10 m·s-1), and arterial age of respondents compared to their actual age. The "absolute" difference between the arterial and actual age between the two evaluated groups of residents (soft vs. harder water) was nearly 5 years on average. The higher arterial stiffness and age of residents that consumed soft drinking water indicate the health significance of lower contents of Ca and Mg in drinking water as an environmental risk factor of cardiovascular diseases. Measuring arterial stiffness of residents in the areas supplied with soft drinking water can be used as a non-invasive approach in the prevention of cardiovascular risks.
Assuntos
Cálcio/química , Cálcio/farmacologia , Doenças Cardiovasculares/prevenção & controle , Magnésio/química , Magnésio/farmacologia , Água/química , Adulto , Artérias/efeitos dos fármacos , Feminino , Humanos , Masculino , Análise de Onda de Pulso , Eslováquia , Abastecimento de ÁguaRESUMO
Tailings deposits generated from mining activities represent a potential risk for the aquatic environment through the release of potentially toxic metals and metalloids occurring in a variety of minerals present in the tailings. Physicochemical and mineralogical characteristics of tailings such as total concentrations of chemical elements, pH, ratio of acid-producing to acid-neutralizing minerals, and primary and secondary mineral phases are very important factors that control the actual release of potentially toxic metals and metalloids from the tailings to the environment. The aims of this study are the determination of geochemical and mineralogical characteristics of tailings deposited in voluminous impoundment situated near the village of Markusovce (eastern Slovakia) and identification of the processes controlling the mobility of selected toxic metals (Cu, Hg) and metalloids (As, Sb). The studied tailings have unique features in comparison with the other tailings investigated previously because of the specific mineral assemblage primarily consisting of barite, siderite, quartz, and minor sulfides. To meet the aims, samples of the tailings were collected from 3 boreholes and 15 excavated pits and subjected to bulk geochemical analyses (i.e., determination of chemical composition, pH, Eh, acid generation, and neutralization potentials) combined with detailed mineralogical characterization using optical microscopy, X-ray diffraction (XRD), electron microprobe analysis (EMPA), and micro-X-ray diffraction (µ-XRD). Additionally, the geochemical and mineralogical factors controlling the transfer of potentially toxic elements from tailings to waters were also determined using short-term batch test (European norm EN 12457), sampling of drainage waters and speciation-equilibrium calculations performed with PHREEQC. The tailings mineral assemblage consists of siderite, barite, quartz, and dolomite. Sulfide minerals constitute only a minor proportion of the tailings mineral assemblage and their occurrence follows the order: chalcopyrite > pyrite > tetrahedrite>arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16-8.12) and the waters (pH 7.00-8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu>Sb>Hg>As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. µ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52-7.96) and low concentrations of dissolved metal(loid)s (<5-7.0 µg/L Cu, <0.1-0.3 µg/L Hg, 5.0-16 µg/L As, and 5.0-43 µg/L Sb). Primary factors influencing aqueous chemistry at the site are mutual processes of sulfide oxidation and carbonate dissolution as well as precipitation reactions and sorption onto hydrous ferric oxides abundantly present at the discharge of the impoundment waters. The results of the study show that, presently, there are no threats of acid mine drainage formation at the site and significant contamination of natural aquatic ecosystem in the close vicinity of the tailings impoundment.