Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gastric Cancer ; 23(3): 426-436, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31677131

RESUMO

BACKGROUND: Jumonji domain-containing protein 2A (JMJD2A) of the JMJD2 family of histone lysine demethylases has been implicated in tumorigenesis. However, its expression and role in gastric cancer (GC) drug resistance remain unknown. Here, we investigated the role of JMJD2A in GC chemotherapeutic susceptibility and its clinical relevance in GC. METHODS: We selected 12 relevant genes from previously identified gene signatures that can predict GC susceptibility to docetaxel, cisplatin, and S-1 (DCS) therapy. Each gene was knocked down using siRNA in GC cell lines, and cell viability assays were performed. JMJD2A expression in GC cell lines and tissues was assessed using qRT-PCR and immunohistochemistry, respectively. A JMJD2A downstream target related to drug susceptibility was examined using whole-gene expression array and immunoprecipitation. RESULTS: Among the 12 candidate genes, down-regulation of JMJD2A showed the maximum effect on GC susceptibility to anti-cancer drugs and increased the IC50 values for 5-FU, cisplatin, and docetaxel 15.3-, 2.7-, and 4.0-fold, respectively. JMJD2A was universally expressed in 12 GC cell lines, and its overexpression in GC tissue was positively correlated with tumor regression in 34 DCS-treated patients. A whole-gene expression array of JMJD2A-knockdown GC cells demonstrated a significant decrease in the expression of pro-apoptotic coiled-coil domain containing 8 (CCDC8), a downstream target of JMJD2A. Direct interaction between CCDC8 and JMJD2A was verified using immunoprecipitation. CCDC8 inhibition restored drug resistance to docetaxel, cisplatin, and S-1. CONCLUSIONS: Our results indicate that JMJD2A is a novel epigenetic factor affecting GC chemotherapeutic susceptibility, and JMJD2A/CCDC8 is a potential GC therapeutic target.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Apoptose , Proteínas de Transporte/genética , Proliferação de Células , Cisplatino/administração & dosagem , Docetaxel/administração & dosagem , Combinação de Medicamentos , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Ácido Oxônico/administração & dosagem , Prognóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Tegafur/administração & dosagem , Células Tumorais Cultivadas
2.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638401

RESUMO

The mechanism of resistance to sorafenib in hepatocellular carcinoma (HCC) remains unclear. We analyzed miRNA expression profiles in sorafenib-resistant HCC cell lines (PLC/PRF5-R1/R2) and parental cell lines (PLC/PRF5) to identify the miRNAs responsible for resistance. Drug sensitivity, migration/invasion capabilities, and epithelial-mesenchymal transition (EMT) properties were analyzed by biochemical methods. The clinical relevance of the target genes to survival in HCC patients were assessed using a public database. Four miRNAs were significantly upregulated in PLC/PRF5-R1/-R2 compared with PLC/PRF5. Among them, miR-125b-5p mimic-transfected PLC/PRF5 cells (PLC/PRF5-miR125b) and showed a significantly higher IC50 for sorafenib compared with controls, while the other miRNA mimics did not. PLC/PRF5-miR125b showed lower E-cadherin and higher Snail and vimentin expression-findings similar to those for PLC/PRF5-R2-which suggests the induction of EMT in those cells. PLC/PRF5-miR125b exhibited significantly higher migration and invasion capabilities and induced sorafenib resistance in an in vivo mouse model. Bioinformatic analysis revealed ataxin-1 as a target gene of miR-125b-5p. PLC/PRF5 cells transfected with ataxin-1 siRNA showed a significantly higher IC50, higher migration/invasion capability, higher cancer stem cell population, and an EMT phenotype. Median overall survival in the low-ataxin-1 patient group was significantly shorter than in the high-ataxin-1 group. In conclusion, miR-125b-5p suppressed ataxin-1 and consequently induced Snail-mediated EMT and stemness, leading to a poor prognosis in HCC patients.

3.
Poult Sci ; 97(5): 1730-1737, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462487

RESUMO

Chicken egg white protein ovalbumin (OVA) undergoes a conversion to a more thermostable form by alkali treatment, which is assumed to be involved in the physiological functions of OVA. Ovalbumin-related protein X (OVAX), a chicken egg white protein, has 77% sequence similarity to OVA and binds to heparin. In this study, structure characteristics and heparin-binding affinity of alkali-treated OVAX were investigated. Cation-exchange chromatography using SP Sepharose resin showed that alkali treatment (pH 10, 55°C) of OVAX induces the occurrence of a distinct OVAX form with a less positive-charge (acidic OVAX). Circular dichroism and tryptophan-fluorescence analyses showed that the newly-formed acidic OVAX form has an 8% lower α-helical content than its native counterpart, while there is no significant difference in steric environments around tryptophan residues between the 2 forms. The OVAX structure built by homology-modeling showed that OVAX possess a basic cluster domain with α-helix equivalent to 7% of total secondary structures, which does not contain any tryptophan residues. These results suggest that, during alkali treatment, OVAX undergoes mainly a conformational change of the α-helical basic cluster domain and thereby forms acidic OVAX. Acidic OVAX induced by alkali treatment exhibited weaker interactions with Heparin Sepharose resin than native OVAX did. Our results suggest that OVAX basic cluster domain is likely a specific binding site of heparin. Consequently, it is suggested that alkali treatment causes the collapse of the OVAX heparin binding site, which might participate in regulating the functions of heparin.


Assuntos
Álcalis/química , Proteínas Aviárias/química , Galinhas , Ovalbumina/química , Animais , Dicroísmo Circular/veterinária , Heparina/química , Ligação Proteica , Estrutura Secundária de Proteína , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA