Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 289(2): E197-205, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15741242

RESUMO

The hormone stanniocalcin (STC) is widely distributed, and in rodents the highest levels of expression are in the ovaries. In both cows and rodents, ovarian STC consists of three high-molecular-weight variants collectively known as big STC. In the ovary, big STC is made by theca cells and interstitial cells and is targeted to lipid storage droplets of nearby luteal cells to inhibit progesterone release. An endocrine pathway is operative during pregnancy and lactation. Whether or not big STC is made by tissues other than ovary has never been addressed. Therefore, the purpose of this study was to determine via a detailed characterization of adrenal glands and adipocytes whether big STC is present in other cells that store and release lipids. The results showed that STC was made in bovine and mouse adrenals, mainly in steroidogenic, adrenocortical cells. The majority of ligand and receptor were likewise confined to cortical zone cells. As in luteal cells, high levels of ligand and receptor were found in the adrenocortical cell lipid droplet fraction. However, adrenals made only the largest (135 kDa) of the three big STC variants. Nonetheless, adrenal STC had much greater receptor affinity than a mixture of the three big STC variants. Adipocytes contained all three big STC variants, and both ligand and receptor were heavily concentrated on the lipid droplets. Moreover, adipocyte lipid storage droplets had 50-fold more receptors than those in steroidogenic cells, indicating that big STC is heavily targeted to adipose cells. The findings collectively support the hypothesis that big STC is not unique to ovarian steroidogenic cells but is in fact common to cells with a role in lipid storage and release.


Assuntos
Adipócitos/metabolismo , Córtex Suprarrenal/metabolismo , Corpo Lúteo/metabolismo , Glicoproteínas/metabolismo , Adipócitos/citologia , Córtex Suprarrenal/citologia , Animais , Bovinos , Fracionamento Celular , Células Cultivadas , Corpo Lúteo/citologia , Feminino , Imuno-Histoquímica , Metabolismo dos Lipídeos , Isoformas de Proteínas
2.
Am J Physiol Endocrinol Metab ; 289(4): E634-42, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16150955

RESUMO

In most mammalian tissues, the stanniocalcin-1 gene (STC-1) produces a 50-kDa polypeptide hormone known as STC50. Within the ovaries, however, the STC-1 gene generates three higher-molecular-mass variants known as big STC. Big STC is targeted locally to corpus luteal cells to block progesterone release. During pregnancy and lactation, however, ovarian big STC production increases markedly, and the hormone is released into the serum. During lactation, this increase in hormone production is dependent on a suckling stimulus, suggesting that ovarian big STC may have regulatory effects on the lactating mammary gland. In this report, we have addressed this possibility. Our results revealed that virgin mammary tissue contained large numbers of membrane- and mitochondrial-associated STC receptors. However, as pregnancy progressed into lactation, there was a decline in receptor densities on both organelles and a corresponding rise in nuclear receptor density, most of which were on milk-producing, alveolar cells. This was accompanied by nuclear sequestration of the ligand. Sequestered STC resolved as one approximately 135-kDa band in the native state and therefore had the appearance of a big STC variant. However, chemical reduction collapsed this one band into six closely spaced, lower-molecular-mass species (28-41 kDa). Mammary gland STC production also underwent a dramatic shift during pregnancy and lactation. High levels of STC gene expression were observed in mammary tissue from virgin and pregnant rats. However, gene expression then fell to nearly undetectable levels during lactation, coinciding with the rise in nuclear targeting. These findings have thus shown that the mammary glands are indeed targeted by STC, even in the virgin state. They have further shown that there are marked changes in this targeting pathway during pregnancy and lactation, accompanied by a switch in ligand source (endogenous to exogenous). They also represent the first example of nuclear targeting by STC.


Assuntos
Núcleo Celular/metabolismo , Glicoproteínas/metabolismo , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Prenhez/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células Cultivadas , Feminino , Camundongos , Gravidez , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA