Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 603(7902): 715-720, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104836

RESUMO

The emergence of SARS-CoV-2 variants of concern with progressively increased transmissibility between humans is a threat to global public health. The Omicron variant of SARS-CoV-2 also evades immunity from natural infection or vaccines1, but it is unclear whether its exceptional transmissibility is due to immune evasion or intrinsic virological properties. Here we compared the replication competence and cellular tropism of the wild-type virus and the D614G, Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529) variants in ex vivo explant cultures of human bronchi and lungs. We also evaluated the dependence on TMPRSS2 and cathepsins for infection. We show that Omicron replicates faster than all other SARS-CoV-2 variants studied in the bronchi but less efficiently in the lung parenchyma. All variants of concern have similar cellular tropism compared to the wild type. Omicron is more dependent on cathepsins than the other variants of concern tested, suggesting that the Omicron variant enters cells through a different route compared with the other variants. The lower replication competence of Omicron in the human lungs may explain the reduced severity of Omicron that is now being reported in epidemiological studies, although determinants of severity are multifactorial. These findings provide important biological correlates to previous epidemiological observations.


Assuntos
Brônquios/virologia , Pulmão/virologia , SARS-CoV-2/crescimento & desenvolvimento , Tropismo Viral , Replicação Viral , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Catepsinas/metabolismo , Chlorocebus aethiops , Endocitose , Humanos , Técnicas In Vitro , SARS-CoV-2/imunologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Técnicas de Cultura de Tecidos , Células Vero
2.
J Virol ; 97(12): e0136923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38038429

RESUMO

IMPORTANCE: Viral host adaptation plays an important role in inter-species transmission of coronaviruses and influenza viruses. Multiple human-adaptive mutations have been identified in influenza viruses but not so far in MERS-CoV that circulates widely in dromedary camels in the Arabian Peninsula leading to zoonotic transmission. Here, we analyzed clade B MERS-CoV sequences and identified an amino acid substitution L232F in nsp6 that repeatedly occurs in human MERS-CoV. Using a loss-of-function reverse genetics approach, we found the nsp6 L232F conferred increased viral replication competence in vitro, in cultures of the upper human respiratory tract ex vivo, and in lungs of mice infected in vivo. Our results showed that nsp6 L232F may be an adaptive mutation associated with zoonotic transmission of MERS-CoV. This study highlighted the capacity of MERS-CoV to adapt to transmission to humans and also the need for continued surveillance of MERS-CoV in camels.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Proteínas não Estruturais Virais , Animais , Humanos , Camundongos , Substituição de Aminoácidos , Camelus , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Mutação , Proteínas não Estruturais Virais/genética
3.
Nat Mater ; 22(11): 1352-1360, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592030

RESUMO

Conventional pressure sensors rely on solid sensing elements. Instead, inspired by the air entrapment phenomenon on the surfaces of submerged lotus leaves, we designed a pressure sensor that uses the solid-liquid-liquid-gas multiphasic interfaces and the trapped elastic air layer to modulate capacitance changes with pressure at the interfaces. By creating an ultraslippery interface and structuring the electrodes at the nanoscale and microscale, we achieve near-friction-free contact line motion and thus near-ideal pressure-sensing performance. Using a closed-cell pillar array structure in synergy with the ultraslippery electrode surface, our sensor achieved outstanding linearity (R2 = 0.99944 ± 0.00015; nonlinearity, 1.49 ± 0.17%) while simultaneously possessing ultralow hysteresis (1.34 ± 0.20%) and very high sensitivity (79.1 ± 4.3 pF kPa-1). The sensor can operate under turbulent flow, in in vivo biological environments and during laparoscopic procedures. We anticipate that such a strategy will enable ultrasensitive and ultraprecise pressure monitoring in complex fluid environments with performance beyond the reach of the current state-of-the-art.

4.
Emerg Infect Dis ; 29(6): 1210-1214, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095078

RESUMO

Human infection with avian influenza A(H3N8) virus is uncommon but can lead to acute respiratory distress syndrome. In explant cultures of the human bronchus and lung, novel H3N8 virus showed limited replication efficiency in bronchial and lung tissue but had a higher replication than avian H3N8 virus in lung tissue.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Pulmão/diagnóstico por imagem , Brônquios , Replicação Viral
5.
Phys Rev Lett ; 130(22): 227201, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327430

RESUMO

Noise is a fundamental challenge for sensors deployed in daily environments for ambient sensing, health monitoring, and wireless networking. Current strategies for noise mitigation rely primarily on reducing or removing noise. Here, we introduce stochastic exceptional points and show the utility to reverse the detrimental effect of noise. The stochastic process theory illustrates that the stochastic exceptional points manifest as fluctuating sensory thresholds that give rise to stochastic resonance, a counterintuitive phenomenon in which the added noise increases the system's ability to detect weak signals. Demonstrations using a wearable wireless sensor show that the stochastic exceptional points lead to more accurate tracking of a person's vital signs during exercise. Our results may lead to a distinct class of sensors that overcome and are enhanced by ambient noise for applications ranging from healthcare to the internet of things.


Assuntos
Ruído , Humanos , Processos Estocásticos , Limiar Sensorial
6.
Clin Infect Dis ; 74(2): 199-209, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33956935

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten public health globally. Patients with severe COVID-19 disease progress to acute respiratory distress syndrome, with respiratory and multiple organ failure. It is believed that dysregulated production of proinflammatory cytokines and endothelial dysfunction contribute to the pathogenesis of severe diseases. However, the mechanisms of SARS-CoV-2 pathogenesis and the role of endothelial cells are poorly understood. METHODS: Well-differentiated human airway epithelial cells were used to explore cytokine and chemokine production after SARS-CoV-2 infection. We measured the susceptibility to infection, immune response, and expression of adhesion molecules in human pulmonary microvascular endothelial cells (HPMVECs) exposed to conditioned medium from infected epithelial cells. The effect of imatinib on HPMVECs exposed to conditioned medium was evaluated. RESULTS: We demonstrated the production of interleukin-6, interferon gamma-induced protein-10, and monocyte chemoattractant protein-1 from the infected human airway cells after infection with SARS-CoV-2. Although HPMVECs did not support productive replication of SARS-CoV-2, treatment of HPMVECs with conditioned medium collected from infected airway cells induced an upregulation of proinflammatory cytokines, chemokines, and vascular adhesion molecules. Imatinib inhibited the upregulation of these cytokines, chemokines, and adhesion molecules in HPMVECs treated with conditioned medium. CONCLUSIONS: We evaluated the role of endothelial cells in the development of clinical disease caused by SARS-CoV-2 and the importance of endothelial cell-epithelial cell interaction in the pathogenesis of human COVID-19 diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Comunicação Celular , Células Endoteliais , Células Epiteliais , Humanos
7.
Philos Trans A Math Phys Eng Sci ; 380(2228): 20210020, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35658679

RESUMO

Wireless interfaces enable brain-implanted devices to remotely interact with the external world. They are critical components in modern research and clinical neurotechnologies and play a central role in determining their overall size, lifetime and functionality. Wireless interfaces use a wide range of modalities-including radio-frequency fields, acoustic waves and light-to transfer energy and data to and from an implanted device. These forms of energy interact with living tissue through distinct mechanisms and therefore lead to systems with vastly different form factors, operating characteristics, and safety considerations. This paper reviews recent advances in the development of wireless interfaces for brain neurotechnologies. We summarize the requirements that state-of-the-art brain-implanted devices impose on the wireless interface, and discuss the working principles and applications of wireless interfaces based on each modality. We also investigate challenges associated with wireless brain neurotechnologies and discuss emerging solutions permitted by recent developments in electrical engineering and materials science. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.


Assuntos
Próteses e Implantes , Tecnologia sem Fio , Encéfalo
8.
J Infect Dis ; 224(5): 821-830, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395484

RESUMO

BACKGROUND: Human spillovers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to dogs and the emergence of a highly contagious avian-origin H3N2 canine influenza virus have raised concerns on the role of dogs in the spread of SARS-CoV-2 and their susceptibility to existing human and avian influenza viruses, which might result in further reassortment. METHODS: We systematically studied the replication kinetics of SARS-CoV-2, SARS-CoV, influenza A viruses of H1, H3, H5, H7, and H9 subtypes, and influenza B viruses of Yamagata-like and Victoria-like lineages in ex vivo canine nasal cavity, soft palate, trachea, and lung tissue explant cultures and examined ACE2 and sialic acid (SA) receptor distribution in these tissues. RESULTS: There was limited productive replication of SARS-CoV-2 in canine nasal cavity and SARS-CoV in canine nasal cavity, soft palate, and lung, with unexpectedly high ACE2 levels in canine nasal cavity and soft palate. Canine tissues were susceptible to a wide range of human and avian influenza viruses, which matched with the abundance of both human and avian SA receptors. CONCLUSIONS: Existence of suitable receptors and tropism for the same tissue foster virus adaptation and reassortment. Continuous surveillance in dog populations should be conducted given the many chances for spillover during outbreaks.


Assuntos
COVID-19/virologia , Vírus da Influenza A/fisiologia , Pulmão/virologia , Cavidade Nasal/virologia , SARS-CoV-2/fisiologia , Traqueia/virologia , Tropismo Viral/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , Cães , Humanos , Influenza Humana/metabolismo , Influenza Humana/virologia , Pulmão/metabolismo , Cavidade Nasal/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Traqueia/metabolismo
9.
Nat Mater ; 19(2): 182-188, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844282

RESUMO

Stretchable optoelectronic materials are essential for applications in wearable electronics, human-machine interfaces and soft robots. However, intrinsically stretchable optoelectronic devices such as light-emitting capacitors usually require high driving alternating voltages and excitation frequencies to achieve sufficient luminance in ambient lighting conditions. Here, we present a healable, low-field illuminating optoelectronic stretchable (HELIOS) device by introducing a transparent, high permittivity polymeric dielectric material. The HELIOS device turns on at an alternating voltage of 23 V and a frequency below 1 kHz, safe operating conditions for human-machine interactions. We achieved a brightness of 1,460 cd m-2 at 2.5 V µm-1 with stable illumination demonstrated up to a maximum of 800% strain. The materials also self-healed mechanically and electronically from punctures or when severed. We further demonstrate various HELIOS light-emitting capacitor devices in environment sensing using optical feedback. Moreover, our devices can be powered wirelessly, potentially enabling applications for untethered damage-resilient soft robots.

10.
Proc Natl Acad Sci U S A ; 115(7): 1469-1474, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378941

RESUMO

An emerging class of targeted therapy relies on light as a spatially and temporally precise stimulus. Photodynamic therapy (PDT) is a clinical example in which optical illumination selectively activates light-sensitive drugs, termed photosensitizers, destroying malignant cells without the side effects associated with systemic treatments such as chemotherapy. Effective clinical application of PDT and other light-based therapies, however, is hindered by challenges in light delivery across biological tissue, which is optically opaque. To target deep regions, current clinical PDT uses optical fibers, but their incompatibility with chronic implantation allows only a single dose of light to be delivered per surgery. Here we report a wireless photonic approach to PDT using a miniaturized (30 mg, 15 mm3) implantable device and wireless powering system for light delivery. We demonstrate the therapeutic efficacy of this approach by activating photosensitizers (chlorin e6) through thick (>3 cm) tissues inaccessible by direct illumination, and by delivering multiple controlled doses of light to suppress tumor growth in vivo in animal cancer models. This versatility in light delivery overcomes key clinical limitations in PDT, and may afford further opportunities for light-based therapies.


Assuntos
Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacocinética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Tecnologia sem Fio/instrumentação , Animais , Clorofilídeos , Relação Dose-Resposta a Droga , Fontes de Energia Elétrica , Desenho de Equipamento , Implantes Experimentais , Camundongos Endogâmicos C57BL , Miniaturização , Neovascularização Patológica , Fotoquimioterapia/instrumentação , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Porfirinas/farmacocinética , Neoplasias da Bexiga Urinária/irrigação sanguínea , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Phys Rev Lett ; 125(18): 187403, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196255

RESUMO

Dynamically encircling exceptional points (EPs) can lead to chiral mode switching as the system parameters are varied along a path that encircles EP. However, conventional encircling protocols result in low transmittance due to path-dependent losses. Here, we present a paradigm to encircle EPs that includes fast Hamiltonian variations on the parameter boundaries, termed Hamiltonian hopping, enabling ultrahigh-efficiency chiral mode switching. This protocol avoids path-dependent loss and allows us to experimentally demonstrate nearly 90% efficiency at 1550 nm in the clockwise direction, overcoming a long-standing challenge of non-Hermitian optical systems and powering up new opportunities for EP physics.

12.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899865

RESUMO

The immune checkpoint blockade represents a revolution in cancer therapy, with the potential to increase survival for many patients for whom current treatments are not effective. However, response rates to current immune checkpoint inhibitors vary widely between patients and different types of cancer, and the mechanisms underlying these varied responses are poorly understood. Insights into the antitumor activities of checkpoint inhibitors are often obtained using syngeneic mouse models, which provide an in vivo preclinical basis for predicting efficacy in human clinical trials. Efforts to establish in vitro syngeneic mouse equivalents, which could increase throughput and permit real-time evaluation of lymphocyte infiltration and tumor killing, have been hampered by difficulties in recapitulating the tumor microenvironment in laboratory systems. Here, we describe a multiplex in vitro system that overcomes many of the deficiencies seen in current static histocultures, which we applied to the evaluation of checkpoint blockade in tumors derived from syngeneic mouse models. Our system enables both precision-controlled perfusion across biopsied tumor fragments and the introduction of checkpoint-inhibited tumor-infiltrating lymphocytes in a single experiment. Through real-time high-resolution confocal imaging and analytics, we demonstrated excellent correlations between in vivo syngeneic mouse and in vitro tumor biopsy responses to checkpoint inhibitors, suggesting the use of this platform for higher throughput evaluation of checkpoint efficacy as a tool for drug development.


Assuntos
Inibidores de Checkpoint Imunológico/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Isoenxertos/imunologia , Isoenxertos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/imunologia
13.
Nat Methods ; 12(10): 969-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26280330

RESUMO

To enable sophisticated optogenetic manipulation of neural circuits throughout the nervous system with limited disruption of animal behavior, light-delivery systems beyond fiber optic tethering and large, head-mounted wireless receivers are desirable. We report the development of an easy-to-construct, implantable wireless optogenetic device. Our smallest version (20 mg, 10 mm(3)) is two orders of magnitude smaller than previously reported wireless optogenetic systems, allowing the entire device to be implanted subcutaneously. With a radio-frequency (RF) power source and controller, this implant produces sufficient light power for optogenetic stimulation with minimal tissue heating (<1 °C). We show how three adaptations of the implant allow for untethered optogenetic control throughout the nervous system (brain, spinal cord and peripheral nerve endings) of behaving mice. This technology opens the door for optogenetic experiments in which animals are able to behave naturally with optogenetic manipulation of both central and peripheral targets.


Assuntos
Encéfalo/fisiologia , Implantes Experimentais , Optogenética/instrumentação , Medula Espinal/fisiologia , Tecnologia sem Fio , Animais , Desenho de Equipamento , Feminino , Luz , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miniaturização/instrumentação , Miniaturização/métodos , Córtex Motor/fisiologia , Nociceptores/fisiologia , Optogenética/métodos , Nervos Periféricos/fisiologia , Temperatura , Tecnologia sem Fio/instrumentação
14.
Eur Respir J ; 49(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28619954

RESUMO

Host response biomarkers can accurately distinguish between influenza and bacterial infection. However, published biomarkers require the measurement of many genes, thereby making it difficult to implement them in clinical practice. This study aims to identify a single-gene biomarker with a high diagnostic accuracy equivalent to multi-gene biomarkers.In this study, we combined an integrated genomic analysis of 1071 individuals with in vitro experiments using well-established infection models.We identified a single-gene biomarker, IFI27, which had a high prediction accuracy (91%) equivalent to that obtained by multi-gene biomarkers. In vitro studies showed that IFI27 was upregulated by TLR7 in plasmacytoid dendritic cells, antigen-presenting cells that responded to influenza virus rather than bacteria. In vivo studies confirmed that IFI27 was expressed in influenza patients but not in bacterial infection, as demonstrated in multiple patient cohorts (n=521). In a large prospective study (n=439) of patients presented with undifferentiated respiratory illness (aetiologies included viral, bacterial and non-infectious conditions), IFI27 displayed 88% diagnostic accuracy (AUC) and 90% specificity in discriminating between influenza and bacterial infections.IFI27 represents a significant step forward in overcoming a translational barrier in applying genomic assay in clinical setting; its implementation may improve the diagnosis and management of respiratory infection.


Assuntos
Infecções Bacterianas , Influenza Humana , Proteínas de Membrana , Infecções Respiratórias , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/genética , Fenômenos Fisiológicos Bacterianos , Biomarcadores/análise , Diagnóstico Diferencial , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Influenza Humana/diagnóstico , Influenza Humana/genética , Interferons/genética , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Orthomyxoviridae/fisiologia , Valor Preditivo dos Testes , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/genética , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia
15.
J Med Genet ; 53(1): 15-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26187060

RESUMO

Approximately 5%-10% of breast cancers are due to genetic predisposition caused by germline mutations; the most commonly tested genes are BRCA1 and BRCA2 mutations. Some mutations are unique to one family and others are recurrent; the spectrum of BRCA1/BRCA2 mutations varies depending on the geographical origins, populations or ethnic groups. In this review, we compiled data from 11 participating Asian countries (Bangladesh, Mainland China, Hong Kong SAR, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Thailand and Vietnam), and from ethnic Asians residing in Canada and the USA. We have additionally conducted a literature review to include other Asian countries mainly in Central and Western Asia. We present the current pathogenic mutation spectrum of BRCA1/BRCA2 genes in patients with breast cancer in various Asian populations. Understanding BRCA1/BRCA2 mutations in Asians will help provide better risk assessment and clinical management of breast cancer.


Assuntos
Neoplasias da Mama/genética , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Mutação , Ásia/epidemiologia , Neoplasias da Mama/epidemiologia , Feminino , Humanos
16.
Proc Natl Acad Sci U S A ; 111(22): 7974-9, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843161

RESUMO

The ability to implant electronic systems in the human body has led to many medical advances. Progress in semiconductor technology paved the way for devices at the scale of a millimeter or less ("microimplants"), but the miniaturization of the power source remains challenging. Although wireless powering has been demonstrated, energy transfer beyond superficial depths in tissue has so far been limited by large coils (at least a centimeter in diameter) unsuitable for a microimplant. Here, we show that this limitation can be overcome by a method, termed midfield powering, to create a high-energy density region deep in tissue inside of which the power-harvesting structure can be made extremely small. Unlike conventional near-field (inductively coupled) coils, for which coupling is limited by exponential field decay, a patterned metal plate is used to induce spatially confined and adaptive energy transport through propagating modes in tissue. We use this method to power a microimplant (2 mm, 70 mg) capable of closed-chest wireless control of the heart that is orders of magnitude smaller than conventional pacemakers. With exposure levels below human safety thresholds, milliwatt levels of power can be transferred to a deep-tissue (>5 cm) microimplant for both complex electronic function and physiological stimulation. The approach developed here should enable new generations of implantable systems that can be integrated into the body at minimal cost and risk.


Assuntos
Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Miniaturização/métodos , Modelos Teóricos , Próteses e Implantes , Tecnologia sem Fio/instrumentação , Animais , Córtex Cerebral , Fontes de Energia Elétrica , Campos Eletromagnéticos , Desenho de Equipamento , Ventrículos do Coração , Humanos , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Coelhos , Semicondutores , Pele , Suínos
17.
BMC Cancer ; 16(1): 887, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27842518

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) remains a poor prognostic factor for breast cancer since no effective targeted therapy is readily available. Our previous studies confirmed miR-199a-5p is a TNBC-specific circulating biomarker, however, its functional roles in breast cancer is largely unknown. Thus, we investigated the functional implication of miR-199a-5p in TNBC and its potential underlying mechanisms. METHODS: MTT assay was performed to investigate the cell proliferation after transient transfection of miR-199a-5p in MDA-MB-231 cell line, followed by cell cycle analysis. Transwell invasion assay and wound healing assay were used to study the invasion and migration ability respectively. To further investigate the stemness-related characteristics of miR-199a-5p in breast cancer cells, single-cell clonogenic assay and aldehyde dehydrogenase (ALDH) assay were performed. 32 normal and 100 breast cancer patients' plasma were recruited to identify the potential circulating markers by qPCR. RESULTS: Cell proliferation assay revealed significant inhibition after miR-199a-5p ectopic expression (p < 0.0001), as a result of decreased S phase (p = 0.0284), increased G0/G1 phase (p = 0.0260) and apoptosis (p = 0.0374). Invasiveness (p = 0.0005) and wound healing ability were also decreased upon miR-199a-5p overexpression. It significantly altered EMT-related genes expression, namely CDH1, ZEB1 and TWIST. Single-cell clonogenic assay showed decreased colonies in miR-199a-5p (p = 0.0182). Significant downregulation (p = 0.0088) and inhibited activity (p = 0.0390) of ALDH was observed in miR-199a-5p. ALDH1A3, which is the dominant isoform of ALDH, is significantly upregulated in breast cancer plasma especially in TNBC (p = 0.0248). PIK3CD was identified as a potential downstream target of miR-199a-5p. CONCLUSIONS: Taken together, we unraveled, for the first time, the tumor-suppressive role of miR-199a-5p in TNBC, which attributed to EMT and cancer stemness properties, providing a novel therapeutic options towards this aggressive disease.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Animais , Apoptose/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Xenoenxertos , Humanos , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , Fator de Crescimento Transformador beta2/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
18.
Blood ; 122(24): 3908-17, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24021668

RESUMO

Transient abnormal myelopoiesis (TAM), a preleukemic disorder unique to neonates with Down syndrome (DS), may transform to childhood acute myeloid leukemia (ML-DS). Acquired GATA1 mutations are present in both TAM and ML-DS. Current definitions of TAM specify neither the percentage of blasts nor the role of GATA1 mutation analysis. To define TAM, we prospectively analyzed clinical findings, blood counts and smears, and GATA1 mutation status in 200 DS neonates. All DS neonates had multiple blood count and smear abnormalities. Surprisingly, 195 of 200 (97.5%) had circulating blasts. GATA1 mutations were detected by Sanger sequencing/denaturing high performance liquid chromatography (Ss/DHPLC) in 17 of 200 (8.5%), all with blasts >10%. Furthermore low-abundance GATA1 mutant clones were detected by targeted next-generation resequencing (NGS) in 18 of 88 (20.4%; sensitivity ∼0.3%) DS neonates without Ss/DHPLC-detectable GATA1 mutations. No clinical or hematologic features distinguished these 18 neonates. We suggest the term "silent TAM" for neonates with DS with GATA1 mutations detectable only by NGS. To identify all babies at risk of ML-DS, we suggest GATA1 mutation and blood count and smear analyses should be performed in DS neonates. Ss/DPHLC can be used for initial screening, but where GATA1 mutations are undetectable by Ss/DHPLC, NGS-based methods can identify neonates with small GATA1 mutant clones.


Assuntos
Células Clonais/metabolismo , Síndrome de Down/genética , Mutação , Doença Aguda , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Cromatografia Líquida de Alta Pressão/métodos , Células Clonais/patologia , Análise Mutacional de DNA/métodos , Síndrome de Down/sangue , Fator de Transcrição GATA1 , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Recém-Nascido , Leucemia Mieloide/sangue , Leucemia Mieloide/diagnóstico , Leucemia Mieloide/genética , Mielopoese/genética , Triagem Neonatal/métodos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Pré-Leucemia/sangue , Pré-Leucemia/diagnóstico , Pré-Leucemia/genética , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade
19.
Analyst ; 140(23): 7876-85, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26332289

RESUMO

Visual detection of nucleic acid biomarkers is a simple and convenient approach to point-of-care applications. However, issues of sensitivity and the handling of complex bio-fluids have posed challenges. Here we report on a visual method detecting nucleic acids using Mie scattering of polystyrene microparticles and the magnetophoretic effect. Magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) were surface-functionalised with oligonucleotide probes, which can hybridise with target oligonucleotides in juxtaposition and lead to the formation of MMPs-targets-PMPs sandwich structures. Using an externally applied magnetic field, the magnetophoretic effect attracts the sandwich structure to the sidewall, which reduces the suspended PMPs and leads to a change in the light transmission via the Mie scattering. Based on the high extinction coefficient of the Mie scattering (∼3 orders of magnitude greater than that of the commonly used gold nanoparticles), our results showed the limit of detection to be 4 pM using a UV-Vis spectrometer or 10 pM by direct visual inspection. Meanwhile, we also demonstrated that this method is compatible with multiplex assays and detection in complex bio-fluids, such as whole blood or a pool of nucleic acids, without purification in advance. With a simplified operation procedure, low instrumentation requirement, high sensitivity and compatibility with complex bio-fluids, this method provides an ideal solution for visual detection of nucleic acids in resource-limited settings.


Assuntos
Técnicas de Química Analítica/métodos , Magnetismo , Ácidos Nucleicos/análise , Animais , Corantes/química , Nanopartículas/química , Ácidos Nucleicos/sangue , Polimorfismo de Nucleotídeo Único , Poliestirenos/química
20.
Cardiol Young ; 25(5): 1002-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25058691

RESUMO

In the spectrum of mitral valve anomalies, unguarded mitral orifice is an exceedingly rare malformation, with only four cases described in the current literature. All previously reported cases have been associated with discordant atrioventricular connections. We describe the first known case of unguarded mitral valve orifice, in the setting of atrioventricular concordance, in a newborn with hypoplastic left heart syndrome.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico/terapia , Valva Mitral/anormalidades , Procedimentos Cirúrgicos Cardíacos , Humanos , Síndrome do Coração Esquerdo Hipoplásico/diagnóstico por imagem , Síndrome do Coração Esquerdo Hipoplásico/cirurgia , Lactente , Obstrução Intestinal/congênito , Obstrução Intestinal/cirurgia , Masculino , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA