RESUMO
Using current water treatment systems, significant amounts of microplastics (MPs) are passing through and being released into the aquatic environment. However, we do not clearly know what effects disinfection processes have had on these particles. In this study, we applied inductively coupled plasma-mass spectrometry (ICP-MS) operating in time-resolved analysis (TRA) mode for quantifying changes in the chlorine (Cl) content of MPs under a variety of water treatment scenarios. Our results illustrated that time-resolved ICP-MS offers a potential method for sensitive and direct analysis of Cl content, including Cl mass and chlorine association (%Cl/C), of discrete particles in the MP suspension by the fast sequential measurements of signals from 35Cl1H2 and 12C1H. Our research, across various water treatment scenarios, also showed that polystyrene (PS) MPs exhibited greater reactivity to Cl disinfectant after being pre-disinfected with UV light and in mildly acidic to neutral pH environments. It is noteworthy that about half of the particles in MP suspension exposed to 10 mg Cl2/L, a typical Cl dose applied in water treatment, were chlorinated, and had a Cl content comparable to that of particles subjected to extreme conditions. Of even greater concern is the fact that our cell viability tests revealed that chlorinated MPs induced considerably higher rates of cell death in both human A549 and Caco-2 cells, and that the effects were Cl dose- and polymer type-dependent. Overall, this study demonstrates the potential of time-resolved ICP-MS as a valuable technique for quantifying the Cl content of MP particles, which is crucial to assessing the fate and transformation of MPs in our water supply and treatment systems.
RESUMO
Despite continuous research on microplastics (MPs), studies exploring the complexity of interaction between MPs and other aqueous constituents in multi-solute systems are scarce. In this study, the uptake and release of nanoceria (CeNPs) by various polystyrene MPs (PSMPs) were investigated. Results showed that PSMPs in the presence of heavy metals (HMs) exhibited a substantially higher sorption affinity for isotropic charged CeNPs than PSMPs alone; this enhanced affinity was attributed to the formation of PSMP-HM-CeNP complexes. FE-SEM imaging reaffirmed that CeNP clusters adhered to PSMP surfaces in the presence of HMs. Such attachment varied dependent on valence state, atomic size of coexisting metal cations, surface texture, and functionalities of MPs. The HM-mediated complex formation on PSMP particles was suppressed at higher ionic strength because of competitive sorption and double-layer compression. Subsequent release of MP-adhered CeNPs and HMs varied significantly between aquatic media and various simulated digestive fluids, verifying the crucial role of MPs for transfer of engineered nanoparticles (ENPs) from natural environments into biota via ingestion of MPs and trophic transfer. Our results highlight the enhanced potential for MPs to accumulate and to transport ENPs when metallic contaminants are present, which adds to the current understanding of the environmental fate and adverse effects of MPs along with various waterborne contaminants in actual environments.
Assuntos
Metais Pesados , Nanopartículas , Poluentes Químicos da Água , Adsorção , Microplásticos , Plásticos , Poliestirenos , Poluentes Químicos da Água/análiseRESUMO
Serosurveillance provides a unique opportunity to quantify the proportion of the population that has been exposed to pathogens. Here, we developed and piloted Serosurveillance for Continuous, ActionabLe Epidemiologic Intelligence of Transmission (SCALE-IT), a platform through which we systematically tested remnant samples from routine blood draws in two major hospital networks in San Francisco for SARS-CoV-2 antibodies during the early months of the pandemic. Importantly, SCALE-IT allows for algorithmic sample selection and rich data on covariates by leveraging electronic health record data. We estimated overall seroprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and identified important heterogeneities by neighborhood, homelessness status, and race/ethnicity. Neighborhood seroprevalence estimates from SCALE-IT were comparable to local community-based surveys, while providing results encompassing the entire city that have been previously unavailable. Leveraging this hybrid serosurveillance approach has strong potential for application beyond this local context and for diseases other than SARS-CoV-2.
Assuntos
COVID-19/epidemiologia , Registros Eletrônicos de Saúde/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2/isolamento & purificação , São Francisco/epidemiologia , Estudos Soroepidemiológicos , Adulto JovemRESUMO
Serosurveillance provides a unique opportunity to quantify the proportion of the population that has been exposed to pathogens. Here, we developed and piloted Serosurveillance for Continuous, ActionabLe Epidemiologic Intelligence of Transmission (SCALE-IT), a platform through which we systematically tested remnant samples from routine blood draws in two major hospital networks in San Francisco for SARS-CoV-2 antibodies during the early months of the pandemic. Importantly, SCALE-IT allows for algorithmic sample selection and rich data on covariates by leveraging electronic medical record data. We estimated overall seroprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and identified important heterogeneities by neighborhood, homelessness status, and race/ethnicity. Neighborhood seroprevalence estimates from SCALE-IT were comparable to local community-based surveys, while providing results encompassing the entire city that have been previously unavailable. Leveraging this hybrid serosurveillance approach has strong potential for application beyond this local context and for diseases other than SARS-CoV-2.
RESUMO
Recent studies have demonstrated that weathering modifies the physicochemical properties and sorption behavior of microplastics (MPs). However, little is known about the effects of such weathering on the simultaneous sorption by MPs of different organic pollutants in multi-solute systems. In this study, the role of cosolute properties in the formation of solute multilayers with a hydrophobic primary solute (4-MBC) on pristine and various weathered polystyrene MPs (PSMPs) was examined. Three weathered PSMPs were studied namely, UV-irradiated PS (UV-PS), microbially degraded PS (MD-NPS), and UV-irradiated PS with subsequent microbial degradation (MD-UV-PS). The weathered PSMPs generally exhibited higher degree of oxygenated functionalities with less surface hydrophobicity than pristine particles. Our findings showed that the formation of solute multilayers with hydrophobic cosolutes was drastically suppressed in UV-PS due to more severe competition at hydrophobic sorption sites. Nevertheless, hydrophilic cosolutes contributed to solute multilayer formation with 4-MBC on PSMPs after UV irradiation, probably due to the stronger sorption of hydrophilic compounds to the oxidized surfaces of these particles via enhanced H-bonding. Strikingly, the sorption of 4-MBC by MD-UV-PS was notably enhanced when hydrophobic cosolutes were present. The observed synergistic sorption indicates that adhered biofilms and/or organic matter on MD-UV-PS could sorb the hydrophobic cosolute molecules, and eventually promote sorption of 4-MBC. Our further toxicity tests revealed that such solute multilayers formed on PSMPs inhibited microalgal growth. These results suggest that the fate and biological effects of MP-mediated chemical exposure could be strongly affected by weathering processes and coexistence of multiple organic contaminants in natural environments.
Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Plásticos , Poliestirenos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Sorption studies of organic pollutants by microplastics (MPs) in single-solute systems are well established in the literature. However, actual aquatic environments always contain a mixture of contaminants. Prediction of the fate and biological effects of MPs-mediated chemical exposure requires a better understanding of sorption-desorption processes of multiple organic contaminants by MPs. In this study, the altered sorption and desorption behaviors of individual organic UV filters (BP-3 and 4-MBC) in the presence of cosolutes (BP-3, 4-MBC, EHMC and OC) on two types of MPs (LDPE and PS) were examined. In most cases, co-occurrence of other organic UV filters appeared to have an antagonistic effect on the sorption of primary solute, which was consistent with trends found in previous studies. Nevertheless, the sorption uptake of 4-MBC as primary solute on PS was enhanced in the presence of cosolute(s), arising presumably from solute multilayer formation caused by laterally attractive π-π interactions between adsorbed cosolute(s) and 4-MBC molecules. Such formation of multilayer sorption in multi-solute systems depends on the solute hydrophobicity and concentration as well as inherent sorptivity of MPs. Our further desorption experiments revealed that the bioaccessibility of primary solute was significantly elevated with cosolutes, even though competitive sorption was observed under the same experimental conditions. These findings supplement the current knowledge on sorption mechanisms and interactions of multiple organic contaminants on MPs, which are critical for a comprehensive environmental risk assessment of both MPs and hazardous anthropogenic contaminants in natural environments.
Assuntos
Plásticos/química , Protetores Solares/química , Poluentes Químicos da Água/química , Adsorção , Cânfora/análogos & derivados , Interações Hidrofóbicas e HidrofílicasRESUMO
Traditional Chinese Medicine (TCM) has long perceived environment as an integral part of the development of body constitution, which is a personal state of health closely related to disease presence. Despite of the ever-growing studies on the clinical effectiveness of TCM and the scientific linking between body constitution and diseases, the geographical influence on body constitution has yet remained an unexplored territory. This study sought to investigate whether the neighbourhood environment is relevant to the composition of body type of a population through statistical multilevel and Geographic Information Systems modelling. The analysis comprised 3277 participants who had completed their body type assessment between 2009 and 2012 inclusive. The multilevel analysis also took simultaneous accounts of both individual-level (gender, age, BMI, type of housing) and area-level (percent greenery, percent road surface, total road intersection, sky view factor, temperature, relative humidity, rainfall and social deprivation index) characteristics to explain geographical variation by body types. Significant random or place effects (p < 0.001) were identified in the multilevel models. The spatial variation of body constitution involved the dynamic interplay between individual and environmental factors. The findings amassed the first scientific indications to back the common belief that place does play a role in the development of body constitution and is worthy of further investigation. By considering spatial and personal attributes simultaneously, the study can yield valuable insights into the patterning of area variation in body constitution and disease presence.